
19F(p,γ)20Ne AND THE STELLAR CNO BURNING CYCLE

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Aaron Couture, B.Sc., M.Sc.

Michael Wiescher, Director

Graduate Program in Physics

Notre Dame, Indiana

December 2005



19F(p,γ)20Ne AND THE STELLAR CNO BURNING CYCLE

Abstract

by

Aaron Couture

A new measurement of the 19F(p,γ) breakout reaction to CNO cycle has been

completed at the University of Notre Dame, covering energies from 200-800 keV. The

sensitivity of the measurement is a significant improvement over past measurements,

including measurements of sufficient accuracy to observe previously unmeasured

interference terms. As part of the development for the measurements, an particle

accelerator of nuclear astrophysics was refurbished and installed in the Nuclear

Structure Laboratory at the University of Notre Dame. A gamma-ray detector

system was designed for isolating high Q-value reactions in a strong gamma-ray

background.

The new measurements decreased the resonance strengths for the 19F(p,γ) re-

action which decrease the stellar reaction rate by a factor of four. As 19F(p,γ)

represents the only possible breakout path from the cold CNO cycle, this confirmed

that the CNO cycle is closed in typical stellar burning scenarios.
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berg, Dr. Manoël Couder, Dr. Wanpeng Tan, Annalia Palumbo, Shawn O’Brien,

and P. J. LeBlanc for the assistance in the running of the experiments, thank you

much. Ethan Uberseder gave the project needed assistance and energy when it was

lagging. I am indebted to Dr. Larry Lamm and Mr. Bradley Mulder for their many

useful discussions and suggestions regarding the installation of the JN accelerator

at Notre Dame. My thanks as well to Mr. Jim Kaiser, Mr. Jerry Lingle, and

Mr. Charlie Guy at the Nuclear Structure Laboratory for their work in keeping the

ancillary systems, whether electronic or mechanical, in running order so that this

work could be done.

Last, but most definitely not least, I am indebted to my family. My wife Jennifer

has been a sounding board for ideas, a support when things were falling apart, a

stalwart companion on this journey, and always, an inspiration. My daughter, Mary,

though she might not yet know it has been a motivation and delightful distraction.

Thank you, all.

ix



CHAPTER 1

INTRODUCTION

Since the Greeks looked to the heavens, watching Apollo’s fiery chariot race across

the skies, we have wondered as to the nature and power of the sun and the stars

above us. Theories for the power driving the light and energy we see from the

sun have evolved as our understanding of the world around us has changed. Early

theories of a wood fired sun gave way to the coal powered sun, both falling to the

theory that the energy of the sun was powered by gravitational attraction in the

1800’s. Unfortunately, none of these theories could account for the longevity of the

lifetime of the stars.

Finally, in 1920, Eddington proposed that the sun was supported against grav-

itational collapse by the energy released from the nuclear fusion of four protons to

form a helium atom [22]. The difference in mass of the these isotopes is converted

directly into the energy that supports and heats the sun as well as life here on earth.

In 1938, Hans Bethe proposed the CN cycle as an alternative method to convert

hydrogen into helium, using carbon and nitrogen isotopes as catalysts [9]. These

seeds have continued to drive our understanding of the lifetimes of stars to this day.

The details have been refined, but the core concept is still how stars are explained

today. This gave us a glimpse of the critical roles stars play in our lives. Yet, stars

do even more. Further investigation of the burning processes and stellar evolution

showed that they are no less than the foundries in which are forged the elements

1



of our selves, our world, and our imaginations. Almost all of the elements except

hydrogen and helium were created in their fiery furnaces.

In 1957, Burbidge, Burbidge, Fowler and Hoyle published a review entitled “Syn-

thesis of the Elements in the Stars” which gathered and synthesized the understand-

ing at that time of both the life cycles of the stars and how those lives affected the

production of the chemical elements observed in the cosmos [13]. This seminal paper

(ubiquitously known as B2FH) has largely guided the development and evolution

of nuclear astrophysics for almost 50 years. The following discussion both of stellar

burning and element synthesis is drawn from their discussion except if noted oth-

erwise. The stellar evolution will be addressed first, followed by a discussion of the

nucleosynthesis that can take place during each stage.

The proto-star is formed from the collapse of gravitationally bound gasses avail-

able in the environs of the proto-star. For Population I stars, or stars formed

after the early universe, the initial composition of material is basically a solar dis-

tribution, predominantly hydrogen and helium, with a small percentage (<1%) of

carbon, nitrogen, and oxygen, and trace amounts of individual heavier elements

(typically ranging from 0.01-100 parts per million) [36]. This gravitational collapse

will continue until there is some counter-balancing force to stop it. The condensa-

tion increases the temperature and pressure of the material in the core until it is hot

enough for nuclear reactions to begin. The first reactions are those with the low-

est barrier to overcome, namely, hydrogen burning reactions. The energy released

from the conversion of hydrogen into helium in the core of the star provides an

outward force, called the radiation pressure, which stops the star from contracting

further. The additional heat from the nuclear reactions can further increase the local

temperature, increasing the reaction rate which can provide an overabundance of

radiation pressure, causing the star to expand outward. The stellar hydrodynamics
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continue to evolve with the star, but typically come in to equilibrium on a fairly

short timescale relative the the lifetime of the star. The temperatures and densities

achieved at equilibrium depend upon the initial mass and composition of the star.

The hydrogen burning process can be either the process proposed by Eddington or

Bethe, depending on the initial mass [41]. The core of the star will continue to burn

hydrogen while there is an outer layer of hydrogen that is too cool and diffuse to

ignite nuclear burning.

Once a star exhausts its hydrogen fuel, there is no longer an energy source to

sustain it against gravitational attraction. It then starts to collapse, heating and

growing more dense. Eventually the core temperatures and densities increase to the

point at which further nuclear reactions can begin. The core of the star is now very

rich in helium, since almost all of the hydrogen has been converted into helium. The

helium is burned via the triple-α process into carbon and oxygen. This three-body

process, while unlikely, is the only method for helium burning because a fusion of

two helium atoms is energetically unbound. Similar to the situation with hydrogen

burning, outside of the helium burning core, there is a shell of helium in which there

is no burning. The ignition of helium burning provides a heat source below the

dormant hydrogen shell which remained from the hydrogen burning. This allows a

very thin hydrogen burning region between the helium shell and the hydrogen shell.

This additional energy source causes the outer shell to expand to over 50 times the

initial stellar radius.

When the helium is consumed, the star will again contract and heat. The core is

now predominantly carbon and oxygen while there are shells of helium and hydrogen.

Once sufficient temperatures are reached, the carbon in the core will start to burn.

At this point, the star has started to resemble an onion—layer of burning nestled

inside layer of burning. Outside of the carbon core is a carbon shell. On the surface

3



Figure 1.1. The onion-layer structure of a star with a carbon-burning core is shown.
The diagram is not to scale. The shells, particularly the hydrogen burning shell, are
much thicker than the inner layer and the core.

of the carbon shell is a thin helium burning layer. On top of the helium burning

layer is a shell of helium. On the surface of the helium shell is a thin hydrogen

burning layer. On top of the hydrogen burning layer is the final shell of hydrogen.

This is illustrated in figure 1.1.

Stellar burning phases of oxygen burning, magnesium burning, and silicon burn-

ing will continue sequentially, ending with an iron core. Layers of dormant shells

and thin burning zones build up for each of these layers. Most stars will not burn

through all of these stages as their initial mass is not sufficient to provided the ex-
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tremely high temperatures necessary for the next burning stage. It is not expected

that our sun will even burn carbon in its core, but will stop after the helium burning

stage. A star with insufficient mass can step out of the burning sequence at any

time when its core has depleted a fuel. The star will then “die” as nuclear burning

processes will cease and its core is supported against further collapse by what is

called electron degeneracy, a purely quantum mechanical phenomenon. The star

no longer behaves like a gas as it had previously. It is a hot, dense, but not very

luminous object that will slowly cool very time and eventually disappear from view.

If the core of the star has burned into iron and nickel, no further energy can be

gained by continued nuclear fusion. The mass of the star is so great (≥ 8 Msun) that

the electron degeneracy pressure cannot support core. There is no further energy

to support the star against gravitational collapse, leading to the cataclysmic event

known as a core-collapse supernova. In a core-collapse supernova, the matter in

the core of the star falls inward unchecked until it reaches nuclear densities. The

material then bounces back with great velocity, smashing into the collapsing outer

shells, releasing great energy and spawning nuclear reactions and ejecting much of

the now processed material of the star into the cosmos. The core itself will form

into a neutron star or a black hole.

The question that remains is what this cycle of the stars can tell us about the

nucleosynthesis, or production, of the elements observed in the universe. Shown

in figure 1.2 is the distribution of elements observed in the universe. One of the

reasons that B2FH is such a critical work is because they, in a self-consistent manner,

explained or predicted sources for all of the major features of the distribution.

The lightest elements, hydrogen and helium, are produced in primordial nucle-

osynthesis, the cooling in the immediate aftermath of the big bang. Most of that

material has never been processed in a stellar core, which why there is still so much
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Figure 1.2. The solar system abundances are shown as a function of mass number A.
The vertical axis is in somewhat idiosyncratic astronomical units. It is the logarithm
of the abundance of the elements relative to the abundance of hydrogen being 1012.
The figure is courtesy of Grevesse and Sauval [30].

today. Hydrogen burning converts the core hydrogen into helium. If the CNO

cycle operates in the star, in addition to converting hydrogen into helium, most

of the CNO isotopes are converted into 14N as that reaction limits the rate. The

triple-alpha process, or core helium burning, converts helium into carbon, oxygen,

and neon. The carbon, oxygen, and neon burning produce elements up to silicon.

Silicon burning produces elements up to the iron region. At any stage along this se-

quence, a star may exit the stellar due to mass constraints. As a result, a perusal of

the literature of isotopic abundances such as Anders and Grevesse or Lodders [4, 36]

will show abundance peaks corresponding to a build-up at each of the appropriate

departure points.

This still leaves us, however, in a universe void of gold, silver, lead, and uranium,

as well as many other important, but perhaps less commonly recognized elements.
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Because fusion is no longer energetically favorable, there has to be a fundamentally

different mechanism for their production. That mechanism is neutron capture. Be-

cause the neutron is neutral, the is no longer the prohibitive Coulomb barrier to

capture reactions. The difficulty is producing neutrons for these capture reactions.

Burbidge, Burbidge, Fowler, and Hoyle postulated that the abundance distribution

of heavy elements recommended two different neutron capture processes. There are

peak doublets along the abundance distribution that correspond to particular nu-

clear structure properties of the isotopes. One of the peaks is broad while the other

is very sharp. The broad peak recommended a fairly indiscriminate path of neutron

capture that did not care so much about individual isotope, but only broad nuclear

structure properties. The sharp peak suggests a very narrow path of synthesis which

is occasionally impeded and a particular isotope was built up in abundance. The

two different processes were dubbed the r-process, or rapid-neutron capture process,

and s-process, or slow-neutron capture process, respectively. Each of these processes

contributes about 50% of the heavy elements.

The r-process takes place in an environment where the neutron capture rate is so

high that beta-unstable isotopes do not have the time to decay until after the entire

process has ended. Captures continue all the way out until further neutron capture

competes with γ-induced disintegration. In such unstable and hot environments,

the nuclear structure effects are smeared so that once the process has ended, the

isotopes which decay back to stability are distributed broadly about any reaction

bottlenecks, corresponding to the broad abundance peaks in the heavy isotopes.

The astrophysical site of the r-process is still not conclusively known, nor even

that the r-process is unique [18]. A preferred site is the core-collapse supernova

that occurs at the end of the life of the heaviest stars when there is no further

fusion to support the iron core. The bounce liberates an extremely high number
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of neutrons in an extremely hot environment. The material quickly races out far

beyond the valley of stability to the point at which neutron captures compete with

photo-disintegrations. After the flash has ended, this material decays back to the

valley of stability. This sequence produces large amounts of heavy isotopes all the

way up to thorium and uranium. Because of the explosion that fueled the reactions,

much of the material is expelled into the cosmos, allowing it to be condensed into

new stars that are being formed.

The s-process takes place while the star is burning carbon and oxygen in the

core. The onion-skin structure allows a separation of a helium rich zone from a

hydrogen rich zone. Because the equilibrium in the shells is rather unstable, there

is a regular pulsing of the shells, allowing a small amount of hydrogen to be mixed

in to the helium shell. The hydrogen combines with carbon to for 13C. In this

helium rich environment, 13C and 22Ne left from the ashes of the CNO cycle can

capture alpha particles, releasing neutrons, though in much lower neutron densities

than observed in the explosive environment of supernovae. If the star began with

an initial composition of heavy elements, neutron capture processes can take place.

Heavy elements can capture neutrons over a relatively long time scale, typically on

the order of years, slowly converting into heavier and heavier isotopes. Because the

time scale is so long, detailed nuclear structure effects are dominant resulting in the

sharply peaked structure that is the signature of the s-process.

One of the most important things to note in this discussion is that the star

can only produce elements heavier than helium after hydrogen burning has been

exhausted in the core. For that reason, the only elements available for Bethe’s

catalysts in hydrogen burning are those isotopes that were present in the initial

composition for the star. This has important implications for the the first stars in

the universe, before significant element synthesis had been completed.
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1.1 Stellar Burning Scenarios

The primary focus of this thesis is the measurement of a weak reaction in main-

sequence hydrogen burning. To foster an understanding of the role played by the

19F(p,γ)20Ne reaction, the two hydrogen cycles will be discussed in some detail,

highlighting the differences between them and noting when each is expected to be

dominant. In order to aid in the discussion, some basic nuclear physics terminology

should be introduced. Reactions, both in the laboratory and in stars are denoted by

A + x −→ B + y. In the before reaction, species A combined with species x to give

species B and y. While A and B are usually nuclei, x and y can be nuclei, electrons,

positrons, neutrino, gamma-rays, etc. It is also possible for there to be more than

two species on either side of the reaction. When describing the same reaction done

in the laboratory, if there is a target of A impinged upon by a beam of x, it will

often be written A(x,y)B. Nuclei are indicated by their mass number and chemical

name, mN, where m is the mass number and N is the chemical name. The hydrogen

and helium isotopes deviate from this rule, with 1H, 2H, and 3H being denoted

p (proton), d (deuteron), and t (tritium) respectively. 4He is commonly denoted

α. For the reaction of interest in this thesis, fluorine-19 (19F) combines with a

proton to form neon-20 (20Ne), giving off a gamma-ray. This would be denoted

19F + p −→ 20Ne + γ. Since a stationary 19F target was hit with protons, the

laboratory shorthand for the reaction would be 19F(p,γ)20Ne. Lower indices on the

exit particles are typically used to indicate the population of a particular excited

state in the residual nucleus.
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1.1.1 Hydrogen Burning Cycles

The p-p Chains

The first reaction sequence for burning hydrogen can be seen illustrated in figure

1.3. Starting with pure hydrogen, the reaction sequence proceeds as follows. First is

a proton-proton reaction. Once sufficient deuterium accumulates, a proton capture

takes place on deuterium. Finally, once there is sufficient 3He, the 3He + 3He

reaction produces 4He, the net result of all of the steps being the conversion of four

protons into one α and 26.731 MeV of energy.

p + p −→ d + e+ + νe + 1.442 MeV

d + p −→ 3He + 5.494 MeV

3He + 3He −→ α + 2p + 12.859 MeV

Once sufficient 3He and 4He accumulate, additional reaction channels become

available. The pp-II and pp-III chains are shown as breakout in figure 1.3 and

detailed below.

3He + α −→ 7Be

pp-II pp-III

7Be + e− −→ 7Li + νe
7Be + p −→ 8B

7Li + p −→ 2α 8B −→ 8Bem + e+ νe

8Bem −→ 2α

For all of the p-p chains, the limiting reaction is the first one, the creation

of deuterium. Because it proceeds via the weak interaction, the cross-section is

significantly smaller than for all of the other reactions in the sequence. This is

a fortuitous situation as it provides a timescale for stellar evolution that is slow

enough to make for an interesting universe. It is again worth noting that none of

the above reactions produce heavy isotopes.
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Figure 1.3. The three pp-chains are shown above. Each of the three chains convert
a total of four protons into a 4He ion.
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The CNO Cycles

When Hans Bethe proposed the CN cycle in 1938, he proposed what is now know

to be the first stage of the network, the catalytic burning of hydrogen on carbon

and nitrogen as can be followed below.

12C + p −→ 13N −→ 13C + e+ νe (1.1)

13C + p −→ 14N (1.2)

14N + p −→ 15O −→ 15N + e+ νe (1.3)

15N + p −→ 12C + α (1.4)

By carefully following the steps of the reaction, it can be seen that once again,

four protons are converted into an α. While various carbon, nitrogen, and oxygen

isotopes (thus the CNO cycle) are represented, it is important to note that there

is no net production of any nucleus of other than 4He. The carbon, nitrogen, and

oxygen used must be present before the cycle starts and is left after the cycle ends,

functioning merely as a catalyst while burning is taking place.

It was later observed that if the 15N + p decayed to the ground-state of 16O

rather than emitting an α, the breakout would give rise to an additional cycle. The

CNO-II, -III, and -IV chains detailed below are further breakout cycles that all feed

back into the original cycle, maintaining the principle that no catalytic material

actually leave the cycle.

CNO-II

15N + p −→ 16O

16O + p −→ 17F CNO-III

17O + p −→ 14N + α or −→ 18F −→ 18O CNO-IV

18O + p −→ 15N + α or −→ 19F

19F + p −→ 16O + α

12



Figure 1.4. The CNO cycle for hydrogen burning is illustrated above. As one moves
from left to right on the plot, the number of neutrons (N) is increasing. As one
moves from bottom to top, the number of protons (Z) is increasing.

Since a significant initial abundance of the CNO materials is found as 16O [4],

these additional burning cycles are important to correctly determine the energy

generation and burning time-scale for CNO burning stars. The situation becomes

more interesting should the 19F(p,γ)20Ne reaction show any significant strength.

As a competing reaction with the 19F(p,αγ)16O reaction which closes the CNO-

IV cycle, breakout to 20Ne represents the only possible breakout from the CNO

cycle at temperatures relevant for quiescent hydrogen burning [50]. Because back-

processing is energetically forbidden, this breakout permanently removes catalytic

material from the CNO cycles, potentially changing the energy production rate and

stellar lifetime for hydrogen burning. The situation is best illustrated graphically,

showing all of the cycles operating at once complete with breakout as can be seen

in figure 1.4.
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1.2 Stellar Reaction Rates

The reactions which have been discussed so far are certainly effective means to

convert hydrogen in to helium, no discussion was given of why they are the only

players—Ne-Na and Al-Mg cycles similar to the CNO cycles can also convert hy-

drogen into helium. Among the hundreds of stable nuclei, there are certainly other

cycles which would allow a similar conversion. There are two primary reasons that

the pp-chains and the CNO cycles are the only reaction sequences that are con-

sidered. The first is the simple reason of abundances. Hydrogen, helium, carbon,

nitrogen, oxygen, magnesium, and silicon are the most abundant elements in the

solar system, with carbon and oxygen being by far the most abundant after hydro-

gen and helium [4]. For this reason, the rate of any competing process would have

to be orders of magnitude larger than those for the pp chain and the CNO cycle in

order to contribute significantly to stellar energy production.

The second reason involves the rates themselves. In order for any nuclear reaction

to take place, the nuclei must come close enough to interact. The Coulomb repulsion

between two bare nuclei is proportional to the product of the charges of the nuclei.

Explicitly,

BC =
Z1Z2q

2
e

R
(1.5)

where

R = 1.4(A
1
3
1 + A

1
3
2 ), (1.6)

qe is the electron charge, and the A’s and Z’s are the mass numbers and atomic

numbers of the particles. As a result the necessary energy to overcome the Coulomb

barrier increases linearly with the atomic number of the target. The corresponding

barriers have been calculated and can be seen in table 1.2. The temperatures in

stellar interiors range from 10 to as much as 1000 MK. But this corresponds to a
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TABLE 1.1

SOLAR SYSTEM ABUNDANCES OF SELECTED ELEMENTS

Element Abundance Mass Fraction (%)

1 H 2.79 × 1010 70.683
2 He 2.72 × 109 27.431
6 C 1.01 × 107 0.302
7 N 3.13 × 106 0.109
8 O 2.38 × 107 0.948
10 Ne 3.44 × 106 0.173
12 Mg 1.074 × 106 0.065
14 Si 1.00 × 106 0.070
16 S 5.15 × 105 0.041
26 Fe 9.00 × 105 0.125

NOTE: The abundances of the ten most abundant elements in the solar system as reported by
Anders and Grevesse [4] are shown for comparison. The first columns give the elemental names
and proton number. The abundance is given relative to Si=1.0 × 106. Si is at least an order of
magnitude more abundant than any element not listed above. The mass fraction given in the last
column is based on the elemental masses of the elements. Because of the difficulty in separating
spectral lines of isotopes, only elemental abundances are given.
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TABLE 1.2

COULOMB BARRIER FOR PROTON CAPTURE ON SELECTED ISOTOPES

Reaction Coulomb Barrier
(MeV)

p + p 0.514
d + p 0.455

3He + 3He 1.43
12C + p 1.88
14N + p 2.11
16O + p 2.34
28Si + p 3.57

Maxwell-Boltzmann energy of only hundreds of eV up to a little less than 100 keV,

far less than is classically needed to overcome the Coulomb barriers seen in table

1.2. For this reason, almost all nuclear reactions in quiescent nuclear burning are

allowed because of quantum mechanical tunneling effects. For energies much below

the coulomb barrier, the penetrability, or probability of penetrating the Coulomb

barrier, can be approximated by

P = exp(−2πη) (1.7)

where

η ≡ Z1Z2q
2
e

h̄ν
(1.8)

2πη = 31.29Z1Z2

( μ

E

) 1
2

[41] (1.9)

if E is expressed in keV and μ is the reduced mass in amu. The exponential depen-

dence of the tunneling probability provides a very strong selection criterion favoring

reactions of only the smallest Z.

Between the Maxwell-Boltzmann particle energy distribution in the stellar in-

terior and the varying barrier penetrability based on energy, in order to determine
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the reaction rate per particle pair, the particle energy distribution must be folded

into the cross-section over all energies, yielding

〈σv〉 =

(
8

πμ

) 1
2
(

1

kT

) 3
2
∫ ∞

0

σ(E) E exp

(−E

kT

)
dE [26] (1.10)

where σ is the nuclear cross-section and k is Boltzmann’s constant. At this point it

is convenient to rewrite the cross-section and separate the different contributions.

As was discussed above, the Coulomb repulsion plays a significant role in sub-barrier

reactions. A function S called the astrophysical S-factor can be defined such that

σ(E) = S(E)
1

E
exp(−2πη). (1.11)

Then S is solely of nuclear physics effects, the Coulomb and De Broglie terms being

factored out. There are several advantages to this formalism. First, the Coulomb

term is so dominant at low energies that it is difficult to see what other effects are

playing a role. By separating the nuclear effects from the repulsion, it is possible

to determine the source of the different contributions more easily. Furthermore,

any purely nuclear effects, such as resonance structures, can be seen and treated

independently.

Non-Resonant Reaction Rates

Assuming that the nuclear effects are constant (i.e., the region is non-resonant),

S(E) can be treated as a constant S0 and equation 1.10 can be rewritten

〈σv〉NR =

(
8

πμ

) 1
2
(

1

kT

) 3
2
∫ ∞

0

S(E)
1

E
exp(−2πη) E exp(− E

kT
)dE (1.12)

=

(
8

πμ

) 1
2
(

1

kT

) 3
2

S0

∫ ∞

0

exp

(
− E

kT
− 2πη

)
dE (1.13)

=

(
8

πμ

) 1
2
(

1

kT

) 3
2

S0

∫ ∞

0

exp

(
− E

kT
− 31.29 Z1Z2

( μ

E

) 1
2

)
dE.(1.14)

It is then trivial to differentiate the integrand with respect to energy and solve

for a maximum, EG = 1.22(Z2
1Z

2
2μT 2

6 )
1
3 , the Gamow energy. Because the tails of
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the two exponential components each fall so rapidly, it is only in a small region

near this maximum that there will be any significant contribution to the total rate.

By applying the method of steepest descent and approximating the integrand as a

Gaussian, the 1/e width is given approximately by

Δ =
4

3
1
2

(E0 kT )
1
2 = 0.749 (Z2

1Z
2
2 μ T 5

6 )
1
6 [keV ] [41]. (1.15)

For a detailed discussion of the method of steepest descent, the reader is refereed to

a standard mathematical methods text such as Arfken and Weber [6]. Provided that

the S-factor is constant, it then is only necessary to integrate over the region given

by EG and Δ in order to determine the total reaction rate. S0 can be measured in

a convenient non-resonant region where the coulomb barrier does not so strongly

inhibit the reaction as it is assumed to be constant over all energies well below the

Coulomb barrier.

This formalism is particularly useful in trying to identify the energy regions

which have a significant impact on the reaction rates. It can also be used to to

easily look at the relative contribution from several different components.

Resonant Reaction Rates

For a sharp, but narrow resonance, the cross-section σ(E) varies rapidly, often by

several orders of magnitude over a small range in energies. If the width of the

resonance is much smaller than the resonant energy, the Maxwell-Boltzmann term

in equation 1.10 is basically constant over the region where the cross-section varies.

Because the cross-section is so much larger over this small width where it is strong,

the reaction rate will be dominated by the resonance contribution. We can then

rewrite equation 1.10

〈σv〉R =

(
8

πμ

) 1
2
(

1

kT

) 3
2
∫ ∞

0

σ(E) E exp

(−E

kT

)
dE
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=

(
8

πμ

) 1
2
(

1

kT

) 3
2

ER exp

(−ER

kT

)∫ ∞

0

σ(E) dE. (1.16)

From equation 1.16, it is clear that the energy dependence of the σ is critical and

must be accounted for properly in order to extract the reaction rate. The energy

dependence of nuclear resonances follows a Breit-Wigner resonance shape [11] so

that

σ(E) ∝ ΓaΓb

(E − ER)2 + (1
2
Γ)2

(1.17)

where ER is the resonance energy, Γa is the partial width of the entrance channel,

Γb is the partial width of the exit channel, and Γ is the total width of the state,

defined as the sum over all possible channels.

Most generally, the Breit-Wigner cross section for a particle in—gamma-ray out

reaction is given by

σα1α2 = πλ̄2
α1

ω
1

(E − E0)2 +
(

1
2
Γ
)2 ∑

s1l1L2

Γα1s1l1 Γα2L2 (1.18)

where

λ̄α1 =
Mt + mp

Mt

h̄√
2mpEL

, (1.19)

ω =
(2J1 + 1)

(2j1 + 1)(2J0 + 1)
, (1.20)

EL =
Mt + mp

Mtmp
E, (1.21)

and

Mt is the target mass,

mp is the projectile mass,
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J0 is the spin of the target nucleus,

j1 is the spin of the projectile,

J1 is the spin of the compound state,

J2 is the spin of the final state,

Γ is the total width of the state,

E is the center-of-mass energy,

ER is the resonance energy,

Γα1s1l1 is the partial width of the entrance channel,

Γα2L2 is the partial width of the exit channel.

The summation is over all possible possible spins s1, angular momenta l1, and

gamma-ray multipolarities L2 satisfying the vector equations

s1 = j1 + J0 (1.22)

J1 = s1 + l1 (1.23)

= J2 + L2. (1.24)

A separate term enters for each resonance and entrance—exit pair. For a particle

in—particle out reaction, the second term in the summation would be replaced with

Γα2L2 −→ Γα2s2l2 and the summation over gamma-ray multipolarities would be

replaced by a sum over possible spins and angular momenta satisfying

s2 = j2 + J2 (1.25)

J1 = s2 + l2, (1.26)

with j2 the spin of the emitted particle [29].

In the case of 19F + p, the ground-state spins are both 1
2

+
, so the possible values

of s1 are 0 and 1. Because the states being populated are known to be unnatural
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parity states, (1+ and 2−), s = 0 is disallowed. We can further simplify by looking

at the behaviour for different l-values. The partial width can be written as

Γαsl = Pαlγ
2
αsl. (1.27)

The reduced width γ2 is a purely nuclear property and can be either predicted by

nuclear theory or measured experimentally. The penetrability Pαl for a charged

particle is the solution to the Coulomb wave equation and is independent of nuclear

properties. Thus, the partial widths reported in the literature, should, more pre-

cisely, be reported as a partial width at an energy equal to the resonance energy.

The penetrability Pαl for a charged particle is the solution to the Coulomb wave

equation and is independent of nuclear properties. It is strongly energy and angular

momentum dependent. Because Pl � Pl+1, one can generally neglect all higher l

terms. In this case, the entrance channel sum collapses to a single term. Finally,

because the detection method integrated over all multipolarities, the exit channel

sum collapses, and for 19F + p, there only remains a term ΓpΓγ for each resonance.

This treatment is often sufficient for the yield near a resonance. If, however,

there is interest in the contribution from a resonance at an energy E far from the

resonance (|E − E0| > Γ), then the energy dependence of several terms needs to

be considered explicitly. First we consider the partial widths. Recall from equation

1.27 that the partial width is equal to the penetrability times the reduced width,

Γαsl = Pαl γ
2
αsl. The reduced width γ2 is independent of energy. We then have

Γαsl(E) ∝ Pαl(E) (1.28)

=⇒
Γαsl(E)

Γαsl(ER)
=

Pαl(E)

Pαl(ER)
(1.29)

=⇒

Γαsl(E) =
Pαl(E)

Pαl(ER)
Γαsl(ER). (1.30)
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The penetrabilities Pαl are calculable given the target and projectile, the energy,

and the l-value. Γαsl(ER) is the value measured experimentally. From this, we can

then calculate the partial width at any energy E.

The energy dependence of the gamma-ray partial width behaves differently. The

partial width is given by

Γγ = h̄λγ, (1.31)

where λγ is the gamma-ray transition probability. This expression is not unique

to gamma-rays, but the following transition probability is. For a gamma-ray of

energy Eγ and angular momentum l, the transition probability is given by the

approximation

λγ(Eγ , l) ≈ 8π(l + 1)

l[(2l + 1)!!]2
e2

4πh̄c

(
Eγ

h̄c

)2l+1 (
3

l + 3

)2

c(R0A
1
3 )2l. (1.32)

From this, it can be seen that for some incident energy off resonance, the correction

to the gamma width will go as the ratio of the energies of the primary gamma-rays

to the (2l + 1) [34].

The energy dependence of the total width Γ could be calculated in this way as

well, though it would be more calculationally intensive because of the many terms

that might enter. In practice, the energy dependence is negligible. Recall that the

condition in which energy dependence became a concern was when |E − E0| > Γ.

But under this condition, the energy term in the denominator will be dominant,

and any change in Γ will have little to no effect on the cross-section.

The final energy dependent term that should be mentioned is the resonance en-

ergy E0. The resonance energy from equation 1.18 is not actually the experimental

resonance energy, but the formal resonance energy from the matching of the inter-

nal and external parts of the wave function. This formal resonance energy has a

small dependence on the energy of the incoming particle. It is defined such that at
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resonance, the formal resonance energy and the experimental resonance energy are

the same. The Thomas Correction (or Shift) is the difference between the formal

resonance energy (which has an energy dependence) and the experimental resonance

energy (which is fixed). It is calculable from the Coulomb wave functions. For the

analysis in this thesis, the resonance energy was assumed to be a constant equal

to the experiment resonance energy. The shift for the nuclei and energies of in-

terest was on the order of, at most, ones of eV. Since this correction was so much

smaller than the other factors in the expression, it was neglected in order to speed

calculations. For a comprehensive discussion of the differences between the formal

and experiment resonances energies as well as the Thomas Correction, the reader is

referred to Blatt and Weisskopf’s standard text [11] as well as Thomas’s discussion

of the correction [44].

1.3 Relating Reaction Rates to Laboratory Measurements

While it would be ideal to exactly recreate the stellar scenario in the laboratory in

order to measure reaction rates, it is impractical to do so. Instead, measurements

are made at specific energies. By looking at many different energies, the partial

widths can be determined and then put into equation 1.10 in order to get at the

rate. In the typical laboratory experiment a beam of particles at a “fixed” energy

Eb is impingement upon a target of material with a thickness t, which may or may

not be a pure substance. This introduces several effects which must be accounted

for. First, while the beam of particles has a mean energy Eb, the particles will

have some distribution of energies about Eb which can be written as g(Eb, Ei)dEi,

a probability distribution that for a mean energy Eb, a particle has energy between

E and E + dE. Second, as the particles pass through the target, particles will lose

energy due to scattering so that particles reacting at the back of the target will have
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some energy less than Eb. This can be written as a probability w(Ei, E, x)dE that

a particle incident on the target with energy Ei has energy between E and E + dE

at a depth x. Quantitatively, this gives a yield

Y (E, t) = n

t∫
x=0

∞∫
E1=−∞

∞∫
E2=−∞

g(E, E1) w(E2, E1, x) σ(E2) dE1dE2dx (1.33)

where n is a number density of target atoms. For simplicity, the energy integrals

are written to run over all energies since σ, g, and w vanish rapidly above and

below their maxima. It is further reasonable to assume that the beam distribution

has a constant width, so that it only depends on E − Ei rather than on E and Ei

independently.

The beam resolution can be represented by a Gaussian of the form

g(E1) =
1

ζ

(
1

2π

)1/2

e
− (E1−E)2

2ζ2 (1.34)

where 2ζ is the width of the beam resolution and E is the nominal beam energy. The

integration over the target thickness can be converted into an energy integral. The

straggling can be approximated by either a Gaussian or a Lorentzian distribution. A

Lorentzian would give a more accurate correction due to the tailing at lower energies,

but because this should be a small correction, representing it as a Gaussian should

be sufficient. Then w can be written

w((E2 − E3), (E1 − E2)) =
1

Δ(E1 − E2)

(
1

2π

)1/2

e
− (E2−E3)2

2(Δ(E1−E2))2 . (1.35)

The Ei are energy integrations that should be more clear with the full yield and

Δ(E1−E2) is the straggling as a function of energy loss. This allows the integration

to be rewritten

Y (E, ξ) =

E1=E+3ζ∫
E1=E−3ζ

g(E − E1)

E2=E1−ξ∫
E2=E1

E3=E1∫
E3=E2−3Δ

· (1.36)

w((E2 − E3), (E1 − E2)) σ(E3)dE3dE2dE1
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The integrations have been truncated for computational simplicity and because while

straggling can decrease the energy of a particle, it cannot increase it above the

incident energy. Fortunately, these corrections are expected to have a rather limited

effect on the yield for the reaction being investigated.

Once the dispersion terms are accounted for, all that is left is the reaction cross-

section, the same term that determines the stellar reaction rate. By fitting an

experimental yield curve in this way, the signs of the interference terms in addition

to the widths can be extracted, giving all of the information necessary to apply to

the reaction rate analysis. While there are several further simplifications that can

be made in the case of thin or thick targets, unfortunately the resonances under

scrutiny vary rather widely in width, making such approximations limited in scope.

1.4 Reaction Networks

Now that the concept of a reaction rate is established, the next question becomes

what this means in terms of element synthesis and the evolution of the stellar com-

position over time. A system of differential equations can be set up to describe the

evolution over time of the different species of interest. For pedagogical purposes, we

will consider a simple network with two reactions,

A + B −→ C

and

C −→ D.

We have four species to track. A and B are only destroyed in the network, D is

only created, and C is both created and destroyed. The destruction rate of A will

depend on the rate of a reaction of A + B for a single pair of particles, upon the

amount of A, and the amount of B. This gives

d

dt
A = −λAB NA NB
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where NA refers to the amount of A, NB is the amount of B, and λAB is the reaction

rate for a particle pair of A and B. A similar equation can be written in the case of

B. For species D, we would have

d

dt
D = −λC NC ,

where λC is the decay rate for a single C. Finally, for C, we have

d

dt
C = λAB NA NB − λC NC ,

Using these basic concepts, we can write a network for the CNO-cycle. The

details of the network can be found in appendix B. Rather than looking at the

evolution in terms of total abundance, it is typical to track molar fraction Yi, defined

as the moles of substance i per gram of total material.

Several comments should be made about the network. First, a few comments

can be made about individual isotopes. Hydrogen is only destroyed in this network;

since the process under consideration is a hydrogen burning mechanism, that is

to be expected. Second, helium is only produced and never destroyed. At CNO-

cycle temperatures, the rate for helium burning reactions is so slow that any helium

consumption is negligible. Any β-unstable isotopes are produced in the burning

cycles are always assumed to decay before any further reactions take place. This

is the characteristic difference between the cold CNO-cycle and the so-called hot

CNO-cycle. In the hot CNO-cycle, temperatures are sufficiently high that proton

capture competes with β+-decay. Finally, the network is assumed to stop at 20Ne.

20Ne is an important stopping point as any material processed to 20Ne, cannot be

backprocessed to a CNO isotope via a (p, α) reaction. Material lost to 20Ne is

permanently lost to the cycle, violating one of the basic assumptions of the CNO-

cycle, namely, that it is closed.
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It is possible to write a network that does not make any of these sorts of as-

sumptions. The rates for all possible processes can be entered and the network can

be allowed to evolve as it will. This is often not practical as it discounts all of the

knowledge about both the star and nuclear physics and instead relies on brute force

to trundle through the sea of reactions. The price paid is a immense computational

load. By using the basic nuclear physics to guide the creation of the network, it can

be significantly simplified, allowing calculations to be done in a reasonable amount

of time.

1.5 The Status of 19F + p

The 19F + p reaction is one that has a long history. Cockroft and Walton reported

observing fluorine disintegrations from proton bombardment as early as 1932, the

same year that they developed the first particle accelerator [17]. By 1934 Crane,

Delsasso, Fowler, and Lauritsen Fowler had observed gamma-rays from the proton

induced disintegration of 19F [19]. Given how early the first reaction studies were

made, it is somewhat surprising that there is still significant uncertainty in the

reaction rates. The difficulty arises primarily because the 19F(p,α2γ) reaction is

so strong. The high-energy gamma-rays from the decay of the excited states of

16O cloud the gamma spectrum at low energies with a Compton continuum and at

high energies with pile-up. The benefit has been in the determination of the spins,

parities, energies, and total widths of the resonances at the energies of interest for

this discussion.

The present status of the resonance information for low-energy radiative proton

capture 19F is summarized in table 1.3. To date, no information is available on

the interference effects between the various resonances. There are basically four

measurements that have provided the data that has gone into these resonance width
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parameters. These four measurements will be discussed, including limitations and

benefits of the various techniques.

1.5.1 The Sinclair Measurement

The first significant measurement of the resonances of 19F(p,γ) was made by Rolf

Sinclair in 1953 [42]. Sinclair used a single NaI(Tl) at 0◦ to measure relative yield

between the high-energy gammas and 6-8 MeV gammas. Rates were kept below 320

Hz in order to limit pile-up effects. Resonances were observed at proton energies of

669, 1092, 1324, and 1431 keV.

This early measurement recognized and accounted for one of the most severe

problems facing these measurements—namely, the pile-up of the 6 MeV gamma-

rays. Unfortunately, the necessity of a very low counting rate made it impossible to

determine any information about the yield off resonance. Furthermore, the resolu-

tion of the NaI detector was approximately 1.5 MeV, limiting the ability to make a

clean separation of the contribution from any other reactions.

Sinclair provided resonant cross-sections based on the proton widths reported

by Bonner and Evans [12].

1.5.2 The Farney Measurement

Two years later, Farney et al made a series of measurements from 550-1450 keV

proton energy [25]. Once again, a small, low-resolution NaI detector was used to

measure the gamma radiation from the reaction. The yield was separated into a

“high” energy and “low” energy regime and the contributions were correspondingly

attributed to the (p,γ) and (p,αγ) channels. They used both evaporated NaF and Ta

etched with HF. Full excitation functions are shown for the energy regions studied.

Pile-up effects were seen and a mathematical correction was made in an attempt to

properly account for them. Farney et al reported resonances at 669, 874, 935, 980,
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1090, 1280, 1320, 1335, 1380, and 1430 keV.

Once again, the issue of pile-up reared its ugly head, complicating the analysis

and extraction of resonance parameters. While the detector only showed a resolution

of about 1.1 MeV, the use of two different target types allowed a cleaner separation

of contributions from 19F(p,γ) from contaminant reactions (like 23Na(p,γ)). Unfor-

tunately, the stoichiometry of the HF etched targets was not well known, allowing

only relative measurements to the α−γ channel. The inclusion of off-resonance data

was a significant improvement, though no careful study was done of background con-

tributions.

Only intensity ratios were reported by Farney.

1.5.3 The Berkes Measurement

Two measurements were made by Berkes, Keszthelyi, et al in 1962 and 1963 [32, 8].

A slightly larger NaI detector was used to investigate the resonances at 224, 340,

484, and 597 keV proton energy. The measurements were fairly comprehensive,

looking at α0, α2, p′, and γ channels. Counting rates were kept below 300 Hz in

order to minimize pile-up. An evaporated CaF2 target was used. All measurements

were made on resonance in order to look specifically at the resonance parameters.

The Berkes measurement is the first measurement at significantly lower energies,

starting to reach toward the region of astrophysical interest. No corrections were

made for pile-up as it was determined that the low counting rate combined with

a short trigger time made corrections unnecessary. The energy resolution of the

detector, while significantly improved, was still quite poor by modern standards,

with a resolution of only about 400 keV for 6 MeV gamma-rays. It is also worth

noting that this is the only measurement that reported any strength for the 597

keV resonance, despite it being within the reach of both the Farney measurement
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discussed above and the Subotić measurement which follows.

1.5.4 The Subotić Measurement

The measurement of Subotić et al from 1979 took advantage of significant improve-

ments in detector technology, using both NaI(Tl) detectors to measure the excitation

function and a Ge(Li) detector to measure the contribution on resonance in order

to cleanly determine that the de-excitations were in fact from 20Ne. Strengths were

measured for resonances at 340, 484, 597, 669, 874, and 935 keV. Furthermore, an

excitation function is given across the entire energy range. The authors attempted

to avoid pile-up effects by running at very low countrates. This was coupled with

the improved resolution of the Ge(Li) detector to make a clean determination of the

high-energy gamma-rays.

This first measurement with a high-resolution detector exposed several shortcom-

ings and discrepancies with previous measurements, with contributions differing by

as much as a factor of 6. While the excitation function gives some information

about an overall level of non-resonant contribution, the measurement was certainly

not sensitive enough to observe interference effects between resonances.

Subotić reports resonance strengths which were normalized to the 669 keV res-

onances.

A comparison of all of the measurements can be found in table 1.3.
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1.5.5 The Present Status

The Subotić measurement and its improvements on the knowledge of the 19F(p,γ)

reaction illustrate rather clearly the important effect that improvements in detector

technologies can have on the reaches of experimental techniques. In the 25 years

following that measurement, many advances were made, including the development

of much larger volume (and correspondingly higher efficiency) high-purity germa-

nium detectors and advances in acquisition technologies that make short time-scale

coincident measurements a possibility. These combined make it possible both to

re-evaluate the resonant contributions as well as make a first measurement of the

as yet undetermined interference contributions which play such a significant role at

astrophysical energies.
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CHAPTER 2

EXPERIMENTAL APPARATUS AND PROCEDURE

The main body of the work was conducted in two separate experiments that were

quite similar in philosophy but which utilized different equipment and detector ar-

rays. As such, they will be discussed separately.

The primary difficulty in measuring the cross-section for the reaction of interest

was a strong competing reaction that also produces γ−rays, the signature that was

used to tag the reaction. The competing reaction, 19F(p,αγ)16O, produces a single

γ−ray of energy between six and eight MeV. The reaction of interest, 19F(p,γ)20Ne,

decays either directly to the ground state or through a cascade with a minimum of

12.84 MeV of energy, the Q-value for this reaction [2], as is illustrated in the level

diagram shown in figure 2.1. This difference in energy and decay multiplicity was

exploited for both experiments to extract the cross-section of the proverbial “needle

in the haystack.”

The first experiment described was used primarily as proof of principal. The

main objective was to demonstrate that it was possible to effectively isolate the

19F(p,γ)20Ne reaction from the 19F(p,αγ)16O reaction. The results of the first ex-

periment were used to guide the design and planning of the second experiment.
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Figure 2.1. A energy level diagram of 20Ne as populated via the 19F + p reaction.
Several of the possible gamma decay branches are shown in blue, including decay
to the first and second excited states. To the left is shown 16O + α together with
the dominant gamma decay branchings.

2.1 Detector Types

Both scintillation and solid-state gamma-ray detectors were used in the experiments.

These detectors have very different properties with regard to resolution and efficiency

which were exploited in order to try to improved the measurements.

Barium Fluoride (BaF2) and Thallium-doped Sodium Iodide (NaI(Tl)) are both

inorganic scintillator detectors. When a gamma-ray deposits energy in a scintilla-

tion detector, electrons are excited to the conduction or exciton bands of the ma-

terial [35]. The de-excitation produces photons of a characteristic energy which are

collected and converted into an electron cascade with a photomultiplier. Each com-

pound has a distribution of wavelengths for the photons that are emitted. The recon-

struction of the total gamma-ray energy is a statistical process and thus depends on,

among other things, the total number of photons created, which is inversely propor-

tional to the energy of each photon. This places a limit on the maximum resolution
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which can be obtained with such a detector. When combined with the losses in

resolution due to optical coupling and collection, the resolution of inorganic scintil-

lators cannot compete with semiconductor detectors. This problems is exacerbated

in BaF2 crystals which have intrinsic alpha-activity due to trace amounts of radium

present in the barium used to construct the crystals. On the other hand, the high

density of the materials and ease of growing large crystals of inorganic scintillator

make these materials ideal for high efficiency detectors.

In contrast, the germanium crystals for high-purity germanium (HPGe) detectors

are very difficult to grow with sufficient purity to maintain the salient semiconductor

properties, principally the small band gap. Typical impurities are better than one

part in 1012, a rather stringent restriction [35]. As a result, the volume of HPGe

detectors is much smaller than volumes available for inorganic scintillators. It is

possible to create a detector of larger total volume by packing multiple crystals

into a single housing and summing the total energy off-line. One such configuration

is the “clover” detector, so named because of the four-leaf clover shape that the

four crystals present. There are other significant advantages to the segmentation

of the detector, but they were largely irrelevant in these experiments. The primary

advantage of HPGe detectors lies in their resolution. The energy deposited in a

HPGe detector excites the electrons in the germanium crystal to the conduction

band. Rather than looking for photons from the de-excitations like in scintillation

detectors, a bias is applied across the semiconductor so that the electrons in the

conduction band are collected directly. The number of electrons collected is pro-

portional to the total energy deposited in the detector and the energy required to

excite an electron to the conduction band. The small size of the band gap results

in exceptional resolution for HPGe detectors. Table 2.1 lists nominal properties

of the different detectors used. A more detailed discussion of the properties and
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TABLE 2.1

DETECTOR PROPERTIES

Detector Active Volume Resolution Maximal Emission Bad Gap
(cm3) at 1332 keV (keV) Wavelength (nm) eV

NaI(Tl) 4940 30 413 N/A
BaF2 3540 100 220/310 N/A
HPGe 354 2.4 N/A 0.785

HPGe Clover ≈700 2.4 N/A 0.785

NOTE: The active volumes and resolutions were for the detectors used in the measurements at the
time of the experiments. The clover volume is the total volume for the four individual crystals.
The maximal emission wavelength for NaI(Tl) is from Leo [35]. The HPGe band gaps are at 0
K and are the values reported by [35]. The maximal emission wavelength for BaF2 is taken from
Knoll [33]. BaF2 exhibits two output components, thus the two wavelengths listed.

advantages of different types of gamma-ray detectors can be found in William Leo’s

excellent handbook Techniques for Nuclear and Particle Physics Experiments [35].

More detail on the use of HPGe detectors can be found in Debertin and Helmer’s

text Gamma and X-ray Spectroscopy with Semiconductor Detectors [20].

2.2 The BaF2 Experiment

The first attempt made to measure the 19F(p,γ) cross-section at Notre Dame utilized

an array of BaF2 detectors coupled with a single crystal HPGe in June of 2001. The

goal was to detect the primary in the BaF2 detectors and the secondary in the HPGe

detector. This offers the advantage of high efficiency for the primaries and a clean

reaction determination based on the high resolution of the HPGe detector. The KN

model High Voltage Engineering accelerator was used for this first experiment.
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a) GEANT Simulation of Array b) Photo of Array as Used

Figure 2.2. On the left in panel a) is shown a visualization of the array. The HPGe
detector is shown in blue while the brass target holder is shown in gold. The BaF2

crystals are shown in green and purple with the purple detectors being at forward
angles. One of the forward angle detectors is hidden to make it easier to see the
target holder and HPGe position. The beam was incident in the positive z-direction
from the right of the page. Panel b) is a photo of the array as used during the
experiment.

2.2.1 Detector Array

In order to detect the γ-decay of 20Ne, a detection array using eight BaF2 detectors

coupled with a single High-Purity Germanium (HPGe) detector was used. The BaF2

detectors were each 6” x 6” x 6” cubes. The array was assembled so as to cover

the largest solid angle in order to maintain the highest coincidence efficiency. A

detector layout as well as a photograph of the array as used in the experiment can

be seen in figure 2.2. The energy calibration of the detectors was carried out using

a γ−ray source (60Co) as well as known decay lines in 28Si from the 27Al(p,γ)28Si

reaction.
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2.2.2 Accelerator

The KN model Van de Graaff accelerator at the University of Notre Dame was used

to produce a beam of protons for this stage of the experiment. The accelerator

was run at voltages between 480-700 kV, below its optimized voltage range of 1.0-

3.0 MV. As a result, the beam production and transmission suffered. At lowest

voltages, only about 2 μA of beam was delivered to target, effectively placing a

lower limit on the range of the experiment. As much a 10 μA of beam was available

at higher energies, certainly better than the two available at lowest energies, but

still a limitation for low counting rates. The accelerator was run with 141 psi of an

80/20 mix of N2 and CO2 gasses. The shorting rod was run in to limit the terminal

voltage to 2.0 MV, effectively shorting out half of the column for the experiment.

A magnetic charge-to-momentum separation and beam selection technique was

used to maintain a stable, mono-energetic beam on target. The initial beam from the

accelerator passed through a 17◦ bending magnet. One hundred inches downstream

from the magnet was a pair of horizontal slits, opened ±1 mm. Only that beam

with a given charge-to-momentum ratio given by equation 2.3 could pass through.

Fm =
Q

m

p × 
B (2.1)

Fc =
p2

mρ
(2.2)

=⇒

Bρ =
p

Q
(2.3)

The relation between the momentum-to-charge ratio and the magnetic rigidity is

given above for a beam of charged particles normal to the direction of the magnetic

field. Fm is the magnetic force, Fc is the centripetal force, m is the particle mass,

p is the particle momentum, Q is the charge state, B is the magnetic field and ρ is

the bending radius of the magnet. Following from equation 2.3 and solving for the
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energy,

p =
√

2mE (2.4)

=⇒

Bρ =

√
2mE

Q
(2.5)

=⇒

B =

√
2mE

Qρ
(2.6)

= kp

√
E (2.7)

where kp is a constant dependent on the mass and charge state of the projectile

as well as the bending radius of the magnet. A NMR gaussmeter was used to

determine the resonant frequency directly proportional to the magnetic field, while

the constant was determined experimentally for each different beam. The proton

NMR constant for the KN was kp = 212.72 MHz/
√

MeV .

2.2.3 Targets and Charge Collection

The targets used were CaF2 evaporated on solid Ta backings. The backings were

cut to 1.5” x 1.5” squares and were 0.010” thick. The targets were prepared first by

cleaning the Ta with ethanol. Once cleaned, they were mounted in the evaporator on

conducting posts. The evaporator was designed with externally exchangeable leads

so that current could be sent through different paths without breaking vacuum.

A 0.005” Ta boat was filled with CaF2 powder 4.4” below the target blank. The

chamber was evacuated. Once down to a vacuum better than 2 x 10−6 torr, the

Ta blank was heated by passing current through it. Once the Ta reached a dark

orange glow, it was allowed to bake for five minutes to remove any organic surface

contaminants. The targets were normally prepared in pairs, using a single 1.5”

x 3.0” piece of Ta that was cut in half after evaporation as it was easier to heat
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and allowed preparation of twice as many targets in the same time. Once the five

minutes had passed, the current was turned down and the leads were transferred

in order to pass current through the boat holding the CaF2 powder. The current

was slowly increased on the boat until a reasonable evaporation rate was achieved.

If the current was increased too rapidly, the evaporation would start too quickly,

trapping a bubble under the powder which would blow the powder out of the boat

when it was released. Five to ten minutes was a reasonable time for bringing up the

current. The evaporation was monitored by employing a deposition monitor that

was mounted near the Ta target blank and at a similar distance from the boat. It

is worth noting that as long as the monitor was in a reasonable position, it was

not important that it have exactly the same exposure as the target blanks since

the actual target thickness was always measured with beam. The primary role of

the deposition monitor was to allow reliable reproduction of targets of the same

thickness. So long as its position relative to the targets was unchanged, this worked

very reliably. Evaporation of CaF2 continued until a thickness of 25 μg/cm2 was

achieved. The targets were visually inspected after production to ensure that the

evaporation was uniform over the surface of the target.

This thickness of Ta (0.010”) was sufficient to completely stop the incident proton

beam. The total number of protons impinging on the target was determined by

collecting the charge accumulated on the target and integrating the current. Since

the beam was homogeneous in charge state (+1), this current was directly converted

into a number of protons. One possible difficulty is electrons scattering off of the

target and drifting up the beam line, producing a current not related to the beam

on target. To prevent this, the cold finger, to be discussed in more detail below,

which extended to within 0.5” of the target was biased to -300V, a potential that

should be more than sufficient to repel any scattered electrons back to the target.
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Because oil-based pumps were in use in the beamline leading up to the target

station, there was concern that carbon could build up on the surface of the target

during the run. To prevent this, a 8” long copper tube with a 1.25” inner diameter

was connected to an liquid nitrogen (LN) dewar. The beam passed through this

tube, or cold finger, just before reaching the target. As it was maintained at LN

temperatures, any carbon traces moving with the beam would freeze onto the cold

finger before reaching the target. There were no signs of carbon buildup seen either

in the data or upon visual inspection of the target after the run.

In order to try to preserve the target integrity, the target was water-cooled

throughout the experiment. Because of the geometry of the detector stand, the

cooling lines had to exit along the beamline reaching the target. As a result, the

target holder was slightly thicker than usual so that the cooling lines could be

mounted. The target holder was made from 0.48” thick brass, with a diameter

of 3.225”. A reservoir was hollowed out behind the target through which to flow

water. The reservoir was 1.09” in diameter and 0.39” deep, leaving only 0.10” of

brass between the active target area and the HPGe detector. Finally, the beam was

wobbled over the target area in X and Y to spread the beam damage over a larger

area.

2.2.4 Electronics

In order to try to measure the 19F(p,γ)20Ne reaction, it was critical to isolate the

(p,γ) events from the (p,αγi) events. The detector array allowed this to be done by

making a Q-value cut. Ideally, one would prefer to record events in list mode and

write any time there was an event in any detector. Unfortunately, the event rate

for the (p,α) reaction was so high that this method was not feasible. As a result,

some of the reduction of (p,αγ) events had to be done in hardware before the data
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was written to file. The disadvantage of this method was that the cut data was

not recorded—thus, if there had been the desire to go back after the fact to try to

analyze the data in another way, it would not have been possible. Much time and

care was put into deciding how to construct the data trigger in a way that would

both remove bad triggers and allow as much flexibility as possible post data-taking

for further analysis.

The basic premise was to exploit the high efficiency of the BaF2 detectors to-

gether with the high resolution of the HPGe detector. Because the 19F(p,γ)20Ne

reaction decays primarily through a cascade, a coincidence was required between

the BaF2 detectors and the HPGe. The goal was to look for the 1.63 MeV γ-ray

from the transition from the first excited to the ground state in 20Ne. Because of

the strong background from the 6-8 MeV lines from 19F(p,αγ)16O, previous authors

[42, 25, 32, 8, 43] had not searched for this low energy transition, where the HPGe

efficiency is highest. The construction of the trigger logic can be followed in figure

2.3. The gating of the analog-to-digital converters (ADCs) and NIM register can be

followed in figure 2.4. The construction of the pulser trigger and energy signals can

be seen in figure 2.5. A listing of all of the electronics abbreviations can be found

in table A.1.

A constant fraction discriminator (CFD) was set on the BaF2 detectors as well

as the HPGe. The threshold for the BaF2 detectors was at about 500 keV while the

threshold for the HPGe was about 70 keV. The threshold for the BaF2 detectors had

to be set so high because of the intrinsic background in the BaF2 detectors combined

with the high countrates. A coincidence between any BaF2 crystal and the HPGe

would trigger an event. In addition to the recording of the signals in ADCs, the

timing portion of the signal was fed into a NIM register. The register was gated with

a 65 ns gate. Any signal from the CFD within that window would set a detector
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Figure 2.3. The electronics schematics for the BaF2 experiment are illustrated above
as recorded after the experiment. The processing of the timing signals and trigger
generation is illustrated above.

by detector bit to true so that afterward it was possible to determine exactly which

detectors had participated in the coincidence and only use those energy signals in the

event reconstruction. Without the NIM register, a random event that was outside

the 65 ns coincidence window but which arrived within the 2 μs ADC gate could

distort the energy reconstruction.

Next, a prescaler used on the output of the HPGe CFD signal. The output of

the prescaler was OR’ed into the master trigger. This allowed a sampling of the

singles spectrum from the HPGe. The prescaler could be adjusted for prescaling

of 1, 2, 4, 8, 10, 20, 40, and 80. Any time a prescaler event was the source of a

trigger, a prescaler bit was set to true in the NIM register so that the prescaled

spectra could be disentangled from the coincident spectra offline. Effectively, this
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Figure 2.4. The ADC and NIM register gates were generated as illustrated above.
Also shown is the CPU deadtime correction for triggers.

Figure 2.5. The shaping and processing of the energy signals sent to the ADCs is
illustrated above.
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allowed a pure singles spectrum to be taken to watch the 19F(p,αγ)16O channel as

the measurements were in progress. Since 19F(p,αγ)16O has been better studied

that 19F(p,γ)20Ne, it served as a useful diagnostic to ensure that what there was

good understanding of the measurement underway.

Finally, a pulser signal was shaped to resemble a HPGe pulse and fed into the

test input of the HPGe. The height was set to correspond to energy outside the

range of experimental interest to prevent confusion in the later analysis. This signal

produced an output both from the CFD and the shaping amplifier. There was not,

however, a test input on the BaF2 detectors, so there would be no coincidence.

Therefore, the logic output of the pulser was used to generate a trigger signal which

was OR’ed with the master trigger. A pulser bit was set to true in the NIM register

so that pulser signals could be separated from real events offline. By comparing the

number of pulser events triggered to the number seen in the pulser spectrum from

the HPGe, a deadtime measurement could be made. This was used to confirm the

charge deadtime measurements made in real time.

This method significantly reduced the number of 19F(p,αγ)16O events since it

required multiplicity two. This does exclude any ground state transitions from being

observed. They were not expected to contribute significantly to the reaction rate.

Using this method, it was possible to maintain reasonable acquisition rates (∼2kHz)

with relatively high rates in the HPGe (∼15kHz). The rates in the individual BaF2

detectors were in excess of 50kHz. An acquisition rate of 2kHz corresponded to 20%

deadtime due to acquisition, the maximum deadtime that the system was allowed.

Because of the coincidence requirement, it was necessary to determine the coinci-

dence efficiency. The 27Al(p,γ)28Si reaction was used to calibrate the efficiency. The

level structure of 28Si is both well studied and similar to that of 20Ne. This makes

it an ideal candidate for studying the systematics of the setup. The Ep=992 keV
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observed in the HPGe detector in coincidence with a total energy condition in the
BaF2 detectors. As can be seen, the sensitivity of the method is limited and had to
be improved before more detailed studies could be done.

and 633 keV resonances were used in order to determine the detection efficiency. A

detailed discussion of the efficiency determination will be given in section 3.1.3.

A yield curve showing the results of the initial experiment with the BaF2 array

can be seen in figure 2.6. It is worth noting that while it was possible to extract the

(p,γ) channel, there are regions where greater statistics were needed. Furthermore,

a rather narrow energy range was covered in this initial experiment.
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2.3 The NaI(Tl) Experiment

Based on the analysis of the BaF2 experiment, there were several objectives for

further experimentation in order to make a significant impact on the present status

of the data concerning the 19F(p,γ)20Ne data and reaction rates. First, from the

previous measurements, it was clear that the basic concept behind the technique,

utilizing high-efficiency inorganic scintillators coupled with high resolution HPGe

detectors to identify the individual transition as part of a total cascade, was valid.

It was also seen that the sensitivity needed to be improved by at least one order of

magnitude, preferably two, if the inter-resonance region was going to be observed.

Finally, it was necessary to reach to lower energies to probe the most sensitive

regions and make further measurements on lower energy resonances.

These requirements were tackled by making significant improvements both from

the point of view of the accelerator and the detector array. A significant technical

hurdle that had to be overcome before starting the second phase of the experiment

was the installation of a JN model Van de Graaff accelerator, previously located

at the University of Toronto, which was brought to Notre Dame and brought on-

line to provide higher intensity and lower energy beams than had been available

with the KN accelerator used before. The opportunity was taken to reconstruct

almost every subsystem on the accelerator, originally manufactured in the 1960’s.

The single crystal HPGe detector was replaced with a four element clover HPGe

detector that had a significantly larger active volume, increasing the solid angle and

detection efficiency of the high-resolution half of the detection scheme. Finally, the

BaF2 detectors were replaced with NaI(Tl) detectors. The efficiency of the NaI(Tl)

detectors was less than that of the BaF2 detectors, however, they exhibited signifi-

cantly better resolution than the BaF2 detectors and the array geometry decreased

cross-talk between the detectors.
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2.3.1 The JN Van de Graaff Accelerator

In order to extend to the lower energies needed for the second experiment, the JN

model accelerator previously at the University of Toronto was brought to Notre

Dame and reinstalled for nuclear astrophysics experiments. As part of the rein-

stallation, a major overhaul of the accelerator was made. An entire new beamline

plan, shown schematically in figure 2.7, was developed as the space constraints at

Notre Dame were significantly different than those at the University of Toronto.

Furthermore, the JN had to feed in to the same switching magnet as that used for

the KN accelerator so that beam could be delivered to the same beam lines. While

the space constraints were relatively stringent, there was some flexibility in the final

position of several of the optical elements, so beam optics calculations were made

using the OPTIC-II beam simulation package in order to determine the optimum

position of several elements, including a quadrupole doublet focusing magnet before

the analyzing magnet. The use of a quadrupole prior to the analyzing magnet can

present difficulties in beam tuning, but due to the divergence of the beam exiting the

acceleration tube, it was mandatory to include the additional magnet in designing

the beam line.

The analyzing magnet which came with the JN was a reused magnet originally

designed for a different accelerator. The magnet box was poorly designed such that

it was difficult to align. Furthermore, it was not fixed to the pole faces, meaning that

even if the magnet box was aligned, there was no guarantee that the magnetic field

was in th proper place. A new analyzing magnet was designed and built by Sigma

Phi. Its specifications were for use with the JN accelerator. Most importantly, it was

designed with an integrated magnet box, so that the pole faces actually form part of

the vacuum chamber. This allowed pinholes to be placed in the lower magnet pole.

By placing pins of the appropriate height in the holes, the actual pole faces could
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Figure 2.7. The optical elements and basic floor plan of the JN installation at Notre
Dame are shown above. The drawing is not to scale.
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be precisely aligned, a significant improvement over the previous analyzing magnet.

The new analyzing magnet was purchased together with a matched supply capable

of providing 10 ppm long term (over eight hours) current stability and better than

5 ppm short-term stability to make possible very stable field conditions.

The original vacuum pumps were mercury vapor diffusion pumps. While the

pumping speed of diffusion pumps is hard to match, oil-based pumps pollute the

beam with carbon. The health hazards of mercury have made it a difficult substance

to work with because of the necessary precautions that must always be taken in its

handling. For this reason, the vacuum pumps were replaced with turbo-mechanical

pumps. Vacuum interlock systems were designed and built to both protect the pump

and the beamline in the event of a vacuum accident.

The terminal was entirely rewired as the insulation was suspect in many places on

the terminal. The accelerator allowed the production of both hydrogen and helium

beams. A thermo-mechanical leak was used for the production of helium beams

while a palladium leak was used for hydrogen beams. The acceleration tube was

replaced with a rebuilt tube as the original tube had warped due to excessive heat in

its previous incarnation. A Glassman 70 W, 35 kV, 2mA solid-state charging supply

with <0.1% voltage stability replaced the previous system, allowing better control

and monitoring of the charge delivered to terminal. The quadrupole power supplies

were replaced with Hewlett-Packard 6653A power supplies. One of the significant

advantages of the upgrade in the supplies across the board is that it allowed the

implementation of computer control of the accelerator and optical systems.

Group 3 fiber optic control hardware was used to interface the entire accelera-

tion system to a Labview computer control system, significantly simplifying the user

control of the accelerator. Group 3 hardware offers the advantage of electrically iso-

lating the accelerator hardware from the computer control system, an important
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consideration for high-voltage systems. The implementation of a computer control

system for the accelerator presented a significant technical challenge as no acceler-

ator control via Labview had been done at the Nuclear Structure Laboratory prior

to this installation. This required a redesign of the drive for the ion source con-

trol rods. The original installation used selsyn motors to adjust the control rods.

Selsyn motors have the advantage of giving tactile feedback to the operator. This

was not a reasonable design for a computer control system as it required a sense

of touch to operate. Instead, stepper motors were used as the position could then

be determined by a total number of steps that had been taken. Limit collars were

designed to sense upper and lower limits on the travel in case zero was lost. Finally,

additional isolation was provided so that an accelerator spark did not harm any of

the distributed control modules. Furthermore, the Group 3 hardware did not offer

the option of current measurement, only voltage sensing. All of the beam currents

on the slits were converted to logarithmic voltage signals before the were read by

the Group 3 Hardware. The use of the logarithmic amplifiers allowed beam current

sensitivity over eight orders of magnitude.

Once the hardware was in place, it was still necessary to design and write the

software interface. It was visually broken into three basic pieces– beam produc-

tion (or ion source control), acceleration and optics, and output monitoring. The

interface for each of these can be seen in figures 2.8, 2.9, and 2.10 respectively.

The one system which was not converted to computer control was the energy

stabilizer. Instead, energy stabilization was controlled with an analog slit feedback

system like the one described in section 2.2.2. The analyzing slits on the JN were

96” downstream of the analyzing magnet and set to counter settings of ±100 from

the zero. This corresponded to approximately ±1mm. Because the slits operated

differently than the KN slits, it was not possible to get exact distances, only exact
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Figure 2.8. The ion source Labview control interface is shown above. Beam selection
as well as control of the stepper motors for ion source controls in the terminal could
be made via this interface.
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Figure 2.9. The voltage control of the accelerator as well as the focusing and steering
of the beam is controlled via this interface. It is part of a shared panel with the ion
source control, so that only one of them could be viewed at a given time. Several of
the controls were interlocked such that they could only be activated when the belt
was running.
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Figure 2.10. The beam seen by the various slits and apertures on the beamline
could be monitored via this interface. All of the currents were converted back into a
current value in software. An autoscaling feature was designed to make the interface
more user friendly.
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counter values. The JN accelerator was operated with 162 psig of tank gas, an 80/20

mix of N2 and CO2. A Hall probe was used instead of the NMR system used for the

KN. The Lakeshore 420 hall probe was outfitted with a transverse field probe. A

housing was made so that the probe was fixed in position and rotation so as provide

reliable readout. It had sensitivity ranges appropriate to the fields needed both for

protons and alphas, the two planned beams for the JN accelerator.

The ion source bottle used during the experiment had an aluminum exit canal.

While aluminum canals are known to degrade rapidly when running alpha beams, no

significant loss of performance was seen from the ion source during the experiment.

The JN accelerator produced analyzed beams of up to 40 μA of protons, though

typically only ∼20 μA were used in order to preserve the life of the targets. This

already was an increase in beam of an order of magnitude from the KN accelerator

at these energies. The region from 210 keV up to 700 keV was mapped with the JN

accelerator. The KN accelerator was used to map energies from 650 keV up to 800

keV because the JN was unstable at energies above 700 keV during its first runs.

Because the accelerators pass beams through the same switching magnet, the target

and detector setup was unchanged, regardless of which accelerator was being used

to produce beam. The 669 keV resonance in the region of overlap made sure that

the yield curves could be smoothly matched. Typical running parameters for the

JN accelerator during the experiment are listed in Appendix E

Energy Calibration and Reproducibility

Because this was the first experiment conducted on the newly installed accelerator,

it was particularly important to calibrate the beam energy to the magnetic field.

The same well-studied 27Al(p,γ)28Si reaction was used. Very sharp resonances at Ep

= 632.23 keV, 504.90 keV, and 405.5 keV have unique γ signatures [24] which were
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Figure 2.11. The energy calibration of the JN accelerator was determined by the
extraction of the field corresponding to the 50% maximum yield. Two of the cali-
bration points are shown above.

observed with a single crystal HPGe. By using a thick Al target, the resonance

could be scanned from an energy above the resonance energy to below it. The

half-point of the yield curve is the resonance energy. Fitting the field values to

the literature values for the resonance energies with the relation from equation 2.7

allowed the extraction of a Hall probe constant for energy determinations. Figure

2.11 demonstrate the extraction of the fit points The calibration constant determined

for the JN was 4.96 × 10−2 kG/
√

MeV .

Magnetic hysteresis is a well-known phenomenon. While in principle, a known

field should determine the bending of particles passing through the analyzing mag-

net, because the field measurement is only taken at one point and different regions

of the magnet may well exhibit different hysteresis effects, it was necessary to es-

tablish a consistent procedure for changing the field of the magnet to ensure that

the same hysteresis curve was followed, corresponding to passing the same energy

particles through the entire magnet. As a result, it was important that the magnet

be brought into the same state for each energy. The detailed system for doing this
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can be found in Appendix C.

The same procedure was followed throughout the experiment. Effectively, the

current was turned down to 0 for five minutes, and then increased to produce a

field that would be appropriate for protons of approximately 1100 keV of energy,

far above the region of interest. As a cross-check that the procedure was effective

in reproducing the same energy, two resonances were scanned by three different

operators. If the energy were dependent on different tuning procedures, it was

expected that by having different operators and different energies, this effect would

be seen. The results of the scans can be seen in figure 2.12. An implanted 19F

target was used for these tests due to the very high stability of the F implanted in

an Fe backing. A detailed discussion of the stability of implanted F targets can be

found in the work of C. Ugalde [49]. As can be seen, the yield curves differ by less

than 0.2 keV, at the front-edge 50% point, indicating that the procedure is a rather

robust method of reliably returning the same energy.

2.3.2 Detector Array

As was mentioned in the introduction to this section, conceptually, the detector

array for this part of the experiment was quite similar to the detection scheme

discussed above. Rather than BaF2 detectors, Tl doped NaI (NaI(Tl)) detectors

were used. The single crystal HPGe was replaced with a four-element clover HPGe.

Each element had a smaller active volume than the 55% HPGe, but the total active

volume was much larger, boosting the relative efficiency to 155%.

NaI(Tl) Detectors

Four cylindrical NaI(Tl) detectors were used at backward angles. The detectors

were each 8” diameter x 6” deep crystals. They were mounted such that both the

azimuthal and polar angles of the symmetry axis were 45◦ off of the beam axis,
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Figure 2.12. The energy reproducibility of the JN accelerator is demonstrated with
two different 19F(p,αγ) resonances. Three different operators tuned the beam and
ran the excitation functions for these scans.
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and arranged in such a way that each detector pointed inward toward the target.

In order to optimize the solid angle coverage, the detectors were offset so that a

perpendicular line from the detector face to the center of the target was 1.5” off

of the central axis of the detector. This allowed the crystals to move 1.0” closer

to the target, improving the solid angle coverage significantly. Finally, the entire

array was positioned so that the viewing center of the four detectors converged 1.0”

downstream of the target position. This setup was determined to give the maximum

efficiency in a series of tests with a 60Co (Eγ=1173.2, 1332.5 keV) source. A drawing

of the setup can be seen in figure 2.13. The NaI(Tl) detectors covered ∼30% of 4π.

The energy calibration of the NaI(Tl) detectors was carried out using gamma

radiation from a 60Co source (Eγ=1173.2, 1332.5 keV), the photopeak and single

escape lines from the decay from the second excited state of 16O populated from

19F(p,αγ)16O (Eγ=6129.89, 5618.89 keV) [1], and the decay lines from the the 12.194

MeV excited state of 28Si populated from the 27Al(p,γ)28Si reaction at Ep=632 keV

(Eγ=10405.21, 9894.209, 7568.95, and 1779.030 keV) [24]. A linear fit to the the

gamma-ray energies was sufficient.

HPGe Clover Detector

A 155% HPGe clover detector was mounted at zero degrees with the central axis of

the detector anti-parallel to the beam axis. The detector was designed with a 1.5

mm Al endcap; there was 5 mm of vacuum between the back of the endcap and the

front face of the Ge crystals. A thin (0.010”) sheet of Teflon was placed between

the detector and the target holder in order to maintain the electrical isolation of the

detector from the beam line. The total distance from the target to the front face of

the Ge crystals was 19.2 mm. The clover detector covered 40% of 4π.

The energy calibration of the Ge crystals was carried out using the same 60Co
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a) GEANT Simulation of Array b) Photo of Array as Used

Figure 2.13. On the left in panel a) is shown a visualization of the array. The
clover detector is shown in blue with purple crystals while the brass target holder
is shown in gold. The NaI(Tl) crystals are shown in green. The rotation of the
NaI(Tl) crystals allowed a better solid angle coverage. The beam was incident in
the positive z-direction from the right of the page. Panel b) is a photo of the array
as used during the experiment.

source, 40K (Eγ=1460.9 keV), the photopeak, single-, and double-escape lines from

the decay from the second excited state of 16O (Eγ=6129.98, 5618.89, and 5107.89

keV) and the decay of the first excited state of 28Si (Eγ=1779.030 keV). The decays

of the higher excited states of 28Si were not used because the detector resolution was

sharp enough to make the doppler corrections to their energies significant. Because

of the geometry, such corrections were sufficiently uncertain to warrant the exclusion

of these data in the energy calibration.

Coincidence Efficiency

The total efficiency of the array running in the detection mode that was being used

was a critical factor since the goal was to measure an absolute cross-section. In

order to determine both what the absolute efficiency of the setup as well as the

coincidence efficiency was, several techniques were employed. First, a weak 60Co
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source was mounted in the target position. Because 60Co exhibits a two gamma

cascade, it is an excellent choice for determining the coincidence of a setup. The

activity of the source was known, so it was an elementary matter to determine the

number of γ−rays emitted and compare it to the number seen.

The second method exploited the strength of one of the resonances in 19F(p,γ),

allowing the first excited state transition to be seen on top of the Compton back-

ground from the 6.13 MeV lines even in single mode. By comparing the losses by

requiring the coincidence, the coincidence efficiency could be determined directly.

The entire setup was then modeled using the GEANT3 simulation package [15].

Once the absolute calibration by the experimental study, the GEANT simulation

was used to correct for the slight difference in γ-ray energies. A detailed discussion

of the effect of the cut-energy on the efficiency will be given in section 3.1.3

2.3.3 Electronics

As was mentioned in the beginning of the discussion of the NaI(Tl) experiment, the

basic concept behind the detection scheme and trigger logic from the first experiment

was quite successful. For this reason, the electronics were very similar in the two

experiments. The place of the eight BaF2 detectors was taken by the four NaI(Tl)

detectors. The single crystal HPGe was replaced by a four element clover HPGe.

The master trigger was again constructed by requiring a coincidence between any

NaI(Tl) detector and any element of the clover. The OR’ed output from the four

crystals in the clover was sent to a prescaler to allow simultaneous acquisition of

singles spectra. The NIM register was once again used in order to reconstruct

events from only those detectors which actually participated in the coincidence and

to remove prescaled events from the coincidence spectra. The construction of the

individual triggers can be followed in figure 2.14 while the construction of the master
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trigger is shown if figure 2.15. The gating of the energy signals is shown in figure

2.16. Again, all electronics abbreviations can be found in table A.1.

There were several improvements to the electronics from the previous experi-

ment. First, the NaI(Tl) energy signals were converted by an ORTEC 413A ADC,

which had a much faster conversion and readout time than the ADC used for the

BaF2 detectors. This allowed an acquisition rate of almost 4.5 kHz while still main-

taining a maximum deadtime of 20%. Because the NaI(Tl) crystals didn’t have the

intrinsic background present in the BaF2 detectors, it was possible to lower the CFD

threshold to approximately 200 keV. A fast summing module (Wiener 404 sum am-

plifier) made it possible to create a fast sum of the four clover signals. In addition

to the standard CFD signal with a 70 keV threshold, this allowed the creation of

a high-energy clover trigger. Any time that more than approximately 9 MeV was

deposited in the four clover crystals, the event was written to disk, even if there was

not a coincidence with the NaI(Tl) detector. This additional trigger had its own bit

in the NIM register so that these signals could be separated afterward. The main

benefit was that it added sensitivity to ground-state transitions. The one shortfall

of the clover is that it did not have the test input that was available with the sin-

gle crystal HPGe. As a result, it was not possible to use a pulser to confirm the

deadtime measured from the charge integration. Since the pulser deadtime and the

charge deadtime were in excellent agreement in the first experiment, this loss was

expected to have a minimal impact on the uncertainty of the results.

2.3.4 Target Production and Monitoring

A series of evaporated CaF2 targets was used for the main portion of data taking

with the improved detector setup. Table 2.2 lists the details of the separate targets.

Both Ta and Ni backings were used for the targets. There was no apparent difference
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Figure 2.14. The electronics schematics for the NaI(Tl) experiment are illustrated
above as recorded after the experiment. The processing of the timing signals and
trigger generation is illustrated above. Note that the OR of the clover timing signals
is used to create the Ge Trigger.
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Figure 2.15. The various components of the master trigger are illustrated above.
Note that while a coincidence was required between a NaI(Tl) crystal and clover
crystal, the High Energy Ge and singles triggers are OR’ed in directly.

Figure 2.16. The shaping and processing of the energy signals sent to the ADCs is
illustrated above. Note that all of the ADCs used were Ortec AD413As.
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in F yield or stability for the two different backing materials. With the significantly

increased beam currents, noticeable target degradation became a factor for which

it was very important to properly account. In order to monitor the target status,

scans of the 484 keV resonance were repeated frequently throughout the course of

the experiment. Since it was only important to monitor the fluorine content, the

19F(p,αγ)16O channel was used to check stability, looking at the yield from the 6.13

MeV transition to the ground-state of 16O. As this reaction is much stronger that

the 19F(p,γ)20Ne reaction, it was significantly quicker to measure the target profile

and could be done with a sufficiently small amount of beam so as to avoid affecting

the target status by the scan. A more detailed discussion of the target scan results

will be given later when discussing the data analysis.

A cold-finger was once again used to prevent carbon buildup on the surface of

the target. The setup was identical to the setup described in section 2.2.3. The

evaporation technique is also detailed there. An additional caution was taken of

storing the targets in an argon atmosphere after production until they were put in

to use in order to ensure that interaction with the water vapor did not change their

composition before use. The beam was wobbled over a 0.5 x 0.6 in area on the

target. The targets were water cooled as described above. The visual inspection of

the targets upon removal from bombardment showed no signs of carbon buildup.

Some authors have reported that the evaporation of CaF2 changes the chemical

composition and the material actually evaporated is CaF rather than CaF2 [37]. In

order to check the Ca:F ratio in the target, the same evaporation technique was used

to evaporate CaF2 on to a thin carbon foil. By using Rutherford back-scattering

(RBS) it was possible to check the ratio directly. These results confirmed the Ca:F

ratio was 1:2.

It is worth noting that two very thick targets were used in the course of the
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TABLE 2.2

TARGET PARAMETERS

Target No. Comp. Prod. Meth. Backing Thick. (Å) ΔE (keV)

1 CaF2 Evap. Ta 2550 24.5
2 CaF2 Evap. Ta 2550 23.9
3 CaF2 Evap. Ta 770 8.0
4 CaF2 Evap. Ta 770 7.0
5 CaF2 Evap. Ta 800 7.2
6 CaF2 Evap. Ta 800 8.4
7 CaF2 Evap. Ni 780 8.7
9 CaF2 Evap. Ta 780 9.8
10 CaF2 Evap. Ta 780 7.6
11 CaF2 Evap. Ta 800 7.0
12 CaF2 Evap. Ta 800 9.1
13 CaF2 Evap. Ta 800 6.7
14 CaF2 Evap. Ta 800 8.2
15 CaF2 Evap. Ta 810 8.0
16 CaF2 Evap. Ta 810 8.0
19 CaF2 Evap. Ta 800 8.6
101 Al Evap. Ta 950 7.0
205 F Impl. Fe N/A 5.0
301 Blank N/A Ni N/A N/A

NOTE: The first column is a record of target number to aid in keeping track of which target was
which. The second column lists the material that was used to make the target. The production
method, either evaporation or implantation, is in column three. The backing material is listed in
column four. The fifth column lists the target thickness in Angstroms as reported by the deposition
monitor. The final column lists the energy loss in the target material for 480 keV protons. Target
101 was an aluminum target used for various calibration purposes. Target 205 was an implanted
target used for the energy reproducibility tests. Target 301 was a blank Ni backing used to check
any proton induced background in the Ni backing that might differ from that seen from Ta.

66



experiment. The region from 340 keV up to 480 keV was particularly sensitive to

the effects of interest. As a result, this region was scanned not only with the thinner

targets to get a yield curve, but with the thicker target as well, both to provide

better statistics and to confirm the observed yield. The thin target yield can be

seen in figure 2.17.
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Figure 2.17. The yield curve from the experiment with the NaI(Tl) detector array
is shown above. The triangular data is from the (p, α2) channel while the circles
denote the (p, γ) channel. The yield is based on 1.63 MeV gamma-rays observed in
the HPGe Clover detector in coincidence with a total energy condition in the NaI(Tl)
detectors. Comparison with figure 2.6 will show the significant improvement in the
sensitivity of the measurements. This is uncorrected for detector efficiency.
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CHAPTER 3

DATA REDUCTION AND ANALYSIS

While the experiment was quite successful, there still remained a significant body of

work in order to extract resonance parameters and cross-sections. The coincidence

technique which made the experiment feasible also caused a reduction in the rate

of good events. The intrinsic efficiency of the detectors affects the observed inten-

sity. The targets were known to have degraded over time. All of these effects will

change the excitation function and must be understood properly. Once the excita-

tion function is well understood, there remains the difficulty of actually extracting

the resonance parameters based on the fit of a Breit-Wigner cross-section. The role

that each of these effects played and their attribution will be discussed in detail.

The experiment using the NaI(Tl) detector array was the only one used in the final

analysis because much more care was taken to make sure that the behaviour of the

targets and detectors were well understood.

3.1 Experimental Systematics

Before it was appropriate to consider the extraction of the resonance parameters, it

was necessary to understand the components that contributed to the datasets, or

the experimental systematics. This primarily included understanding the behaviour

of the detectors and the targets.
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3.1.1 Detector Calibration

In the preceding sections, it was indicated that the events were reconstructed count-

ing on a total-energy sum over several detectors. In order perform this type of

summation, it was necessary to calibrate the energy response so that the energies

from the different detectors could be added together and any binning artifacts were

removed.

Some of this was accomplished by appropriately adjusting the spectroscopic am-

plifiers so that the gain from the individual detectors was close to the same. While

this was useful for the online analysis, the precision was too poor for the offline

analysis. For this reason, several gamma-ray standards were also used in order to

rescale the energy of the detectors. The range of gamma-ray energies of interest was

rather large, spanning from a few hundred keV up to 12 MeV. In order to determine

the scaling, the gamma-rays listed in table 3.1 were fit to the corresponding channel

number, yielding a channel to energy calibration for each detector as listed in table

3.2. A typical fit for a HPGe detector is illustrated in figure 3.1. For the NaI(Tl)

detectors, the higher energies pose the potential for quenching, or a reduction in

gain at higher energies. For this reason, a quadratic fit was done as well as a linear

fit. There was no evidence of quenching in the fits, as can be seen in figure 3.2. A

linear fit to the data was used.

It is worth commenting on the decision to not include the highest energy gamma-

rays in the calibration of the HPGe crystals. First, the energy region of interest

for the HPGe detector was near 1.6 MeV, meaning that an accurate calibration

above 8 MeV was not critical to the success of the work. Second, the high-energy

gamma-rays from 28Si as observed by the HPGe crystals would be doppler shifted.

The clover was positioned at 0◦, with each of the the crystals covering a close-

geometry forward angle cone. The uncertainty in the doppler correction would have
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TABLE 3.1

GAMMA-RAY CALIBRATION ENERGIES

Eγ (keV) Source Nucleus HPGe NaI(Tl) Reference

1173.2 60Co Source 60Ni yes yes [47]
1332.5 60Co Source 60Ni yes yes [47]
1460.9 Natural 40K 40Ar, 1→g.s. yes yes [24]
1779.0 27Al(p,γ) 28Si, 1→g.s. yes yes [24]
5107.9 19F(p,α2)

16O, 2→g.s. 1 yes yes [1, 23]
5618.9 19F(p,α2)

16O, 2→g.s. 2 yes yes [1, 23]
6130.0 19F(p,α2)

16O, 2→g.s. 3 yes yes [1]
7569. ± 1. 27Al(p,γ) 28Si, R→2 3 no yes [24]
9894. ± 1. 27Al(p,γ) 28Si, R→1 2 no yes [24]
10405. ± 1. 27Al(p,γ) 28Si, R→1 3 no yes [24]

NOTE: The gamma-ray energies for the calibrations are listed above. For several of the reaction-
gammas, single- and double-escape lines were used in addition to the photopeak. All of the lines
from 28Si came from the depopulation 12.194 MeV state. The lines which came from a full-energy
peak are denoted with an upper 3 (3). The lines from a single-escape energy are denoted with
an upper 2 (2). The lines from a double-escape are denoted with an upper 1 (1). The high
energy gamma rays (Eγ > 5 MeV) from 28mSi all doppler-shifted due to their short lifetimes. The
detectors were assumed to be at 135◦ and the proton energy was 633 keV.
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Figure 3.1. A typical fit of the channel-to-energy value for a HPGe crystal. There
were no apparent non-linearities in the energy calibration. Each channel corre-
sponded to approximately two keV before calibration.
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Figure 3.2. A typical fit of the channel-to-energy value for a NaI(Tl) crystal. It
is worth noting the minimal difference between the linear (solid) and quadratic
(dashed) fits, indicating that there was not significant signal quenching for high-
energy gamma-rays. Furthermore, the curvature of the second order term is negative
when quenching would lead to a positive term.
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TABLE 3.2

DETECTOR ENERGY CALIBRATION

Type Det. No. a0 a1

HPGe 1 3.0 1.9287
HPGe 2 5.2 1.9295
HPGe 3 18.5 1.9265
HPGe 4 1.3 1.9306

NaI(Tl) 1 13.6 1.9683
NaI(Tl) 2 -18.7 1.9575
NaI(Tl) 3 13.1 1.9442
NaI(Tl) 4 -8.4 1.9537

NOTE: The energy calibration constants of the individual detectors are given above. The gamma
energy in keV was determined from the channel number by the formula Eγ=a0 + a1*(channel
number)

been much larger than the resolution of the detector, making these gamma-rays

inappropriate for calibration. For the NaI(Tl) detectors, the geometry was simpler

and the resolution was much worse, meaning that the remaining uncertainty to the

energy was a relatively small correction. Furthermore, since the NaI(Tl) detectors

were used to observe high-energy gamma-rays, it was important to have a high-

energy calibration point to confirm that no quenching effects were observed.

In addition to the calibration, it was necessary to re-bin the data. A quick

perusal of table 3.2 shows that while the calibration was about 2 keV/channel, this

varies slightly from detector to detector. If there was no other correction made, the

integer nature of the binning would result in significant artifacts which would skew

the spectra. To correct for this, as each count was recorded in integer channel n, it

was randomly reassigned to a real value x in the interval n − 0.5 ≤ x ≤ n + 0.5.
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This value was then converted to an energy using the calibration determined above.

It was re-binned to 2 keV/channel and the individual detectors could be summed

together.

Finally, the absolute calibration, while reliable, need not be too robust for this

work as the energies of the states of interest were fairly well known [1, 2]. It was

only important that the calibration be the same across all of the detectors.

3.1.2 Corrections for Target Degradation

One of the most troubling experimental difficulties was the continual degradation of

the fluorine targets. The problem is illustrated graphically in figure 3.3. As can be

seen, over time the fluorine content is being removed from the target. Because the

yield is turned directly into the cross-section, a changing yield due to a changing

number of target atoms could lead to an incorrect cross-section if care was not taken

to properly correct for it.

There are two effects which need to be accounted for separately. First, the width,

or thickness, of the target changes over time. Second, the plateau height, or density

of fluorine atoms, decreases over time. These two effects must be accounted for

separately as they affect the yield differently at different energies. The change in

plateau height is an effect that is independent of the yield structure present at a

given energy. If there are less target nuclei at a given energy, less yield will be

seen, regardless of the energetics of the cross-section at or near that energy. This

situation can be very different for the width. Consider the yield from a narrow

resonance. As long as the target thickness is much greater than the resonance

width, the yield will be independent of target thickness because the resonant yield

is orders of magnitude larger than the non-resonant yield. In a non-resonant region

where the cross-section is relatively constant over the target thickness, however, the
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Figure 3.3. The target profile as a function of the total charge the target was exposed
to is shown above. Most targets were removed after a total accumulation of ≈0.5
C. The loss of both FWHM and plateau height can be seen.
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yield will be proportional to the target thickness. For this reason, it was necessary

to separate out the two separate degradation effects. The target scans of the 484

keV resonance discussed in section 2.3.4 allowed corrections for both of these effects

to be made. The total charge collected for a typical run ranged from a few mC up

to several hundred mC. A typical target scan put less than one mC on target for

the entire scan, so that the target was relatively unaffected by the additional charge

deposited during a scan.

Target Thickness Correction

First, the target width was parameterized as a function of charge by looking at

the change in full-width half-maximum (FWHM) in the target scans. The FWHM

was calculated by two independent methods in order to check the reliability. In the

first methods, the data was fed into Grace (version 5.18) [48]. Grace will extract

a FWHM based on the simplistic assumptions that the dataset is monotonically

increasing and then monotonically decreasing. This was actually a reasonable as-

sumption for a resonance scan. The deviations while on the plateau of the resonance

did not affect the extraction. Grace then calculates the FWHM based on half-max

crossings of the dataset.

The second parameterization made used the arctan form of the yield function

given in equation 1.33. If the beam spread and straggling are both assumed to be

negligible, then the general yield is integrable and can be reduced to the form

Y (E) =
A0

π

[
arctan

(
E − ER − ξ

ΓT

2

)
− arctan

(
E − ER

ΓT

2

)]
[27]. (3.1)

A0 is a constant that has many things buried inside of it, but it is easy to see that

it is proportional to the plateau height. ΓT is the total resonance width. ER is

the resonance energy. The parameter ξ is the target thickness. This approximation

is only valid the near vicinity of a resonance as it discounts any penetrability and
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interference effects and only includes a single resonance. For the purposes of ana-

lyzing the target scans, this set of assumptions is reasonable. The arctan function

was fit to the datasets to extract the target thicknesses as a function of accumulated

charge. The results of both fits can be seen in figure 3.4. While there are outlying

points, what is clear, is that there was a very rapid deterioration that thinned the

target with very little charge. After this initial degradation, the target thickness

was mostly constant, though there was a slight degradation. This would be consis-

tent with the surface layer of fluorine being blown out of the lattice, leaving behind

the CaF2 below it. It appeared that the Ca was not removed from the target, but

remained behind, providing a buffer that slowed the liberation of further fluorine.

The arctan fit was used over the Grace fit in the final analysis because it is less

phenomenological and it measures target thickness rather than the target thickness

folded in with the resonance width. It was useful to have the second method to

verify that the behaviour observed was not an artifact of the method in which the

width was extracted.

In the fitting of each data point, the initial thickness for that target was corrected

for the total charge already deposited on the target and a new thickness was used

for the target integration.

Plateau Height

A similar type of exercise was necessary to correct for the change in plateau height

over time. Equation 3.1 was again utilized, this time extracting the plateau height

A0. For these fits, the thickness was fixed to 20 keV and only the low-energy side of

the data was used, effectively excluding any target thickness effects from influencing

the fit. The second method of extracting the plateau height was much more old-

fashioned, though still valid. Large size plots were printed and a plateau line was
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Figure 3.5. The loss of plateau height as a function of QT is shown above. Typical
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drawn in by hand through the target plateau. The height of the plateau was read off

of the scale and later used to parameterize the loss in plateau height as a function

of accumulated charge. The results of the parameterization can be seen in figure

3.5.

The plateau loss shows a rather different character than that seen for the FWHM.

The “flash” effect of the initial beam that was the dominant component in the loss

for the FWHM are not seen in the plateau loss. Instead, it seems to indicate that

fluorine was slowly and steadily sputtered out of the target as time went passed.

Typical plateau heights with this normalization ranged from 1.2 to 1.5 before seeing

significant beam. The losses for targets seeing the most beam would be on the order

of 30-40%. The yield for each datapoint was corrected for the expected plateau

height when it was taken. The arctan fits were used for these recalibrations in order
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to be consistent with the FWHM corrections.

As a final cross-check for these corrections, some crude area calculations were

made and the different methods were used to determine a dependence of the target

area on the accumulated charge. This is an indication of the total number of remain-

ing target atoms, but because it neglects any information about the independent

behaviour of the target width and plateau height, it is not useful as a parameter-

ization. None-the-less, if the method used to correct for the width and height are

robust, it should also properly predict the behaviour of the target area. The target

area can be seen in figure 3.6. Three different methods were used to look at the

area. The first was an area calculation from Grace. Grace used a Simpson’s rule

integration in order to find the target area. It suffers a deficiency due to the fact

that the integration cannot be restricted to a certain region, but is carried out over

the entire dataset. The second method, Datint, was a homemade Simpson’s rule

integration that could be restricted to the same region for all sets. Finally, the Arc-

tan area was determined by taking the product of the arctan width and the arctan

plateau height. The consistency of the fits, particularly of the slopes of the Arctan

and Datint methods show the robustness of the correction.

3.1.3 Efficiency Calculations

The detection efficiency for a 19F(p,γ) event depends both upon the intrinsic effi-

ciency of the detector and the efficiency of the detector array for capturing the total

energy of the event. As such, the two components of the efficiency are discussed

separately.

Coincidence Efficiency

One of the most noteworthy strengths of the detector setup was that by taking

advantage of the multiplicity of the cascade and the decay energy, it was possible
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to reduce the background by several orders of magnitude. It is rare, however, that

such improvements can be made at no cost. In this case, the price to be paid was in

efficiency. Any time that a 1.63 MeV gamma-ray struck the HPGe detector and the

corresponding primary was not detected in the NaI(Tl) detectors, a good event was

thrown away. It was necessary to determine what the loss due to the coincidence

requirement was.

There are several factors which contributed to the loss. The first is solid angle

of the NaI(Tl) detectors. Any gamma ray that was not detected due to there not

being a detector in its path was clearly a lost event. Second, any time that a high-

energy gamma-ray interacted with the NaI(Tl) crystal, there is a finite probability

of it depositing a majority of its energy in the detector. Since the total energy

threshold was set at 9.5 MeV, the probability was dependent on the proton energy

(and thus, the energy of the primary). It was reasonable to expect that there was a

different probability for a 11.9 MeV gamma-ray to deposit 7.9 MeV of energy than

for a 11.5 MeV gamma-ray to do the same. One of the advantages of choosing such

a low threshold was that the difference in primary energies was small relative to

the difference between the primary energy and the threshold energy. The effect of

differing proton energies can be seen in figure 3.7.

Fortunately, near the resonance at 669 keV, the strength of the gamma branch

was sufficiently strong to be seen in the singles spectrum. In order to determine

the coincidence efficiency, the efficiency in the region near the resonance energy

was measured by calculating the ratio of the yield of 1.63 MeV gamma-rays in

the singles spectrum versus the yield in the gated spectrum. GEANT calculations

for the coincidence efficiency in a 2–γ cascade were then done for center of mass

energies between 200 and 800 keV in order to determine the energy dependence

of the efficiency. Because of the difficulty in properly simulating the background
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gamma-rays from the 19F(p,αγ)16O reaction, the absolute value of the efficiency

was matched to the measured efficiency at the resonance energy. The efficiency did

show a slight energy dependence that was included in the fitting. The coincidence

efficiency was

C(E) = 0.193 + 1.91 × 10−5 Ecm(keV ) ± 0.005. (3.2)

Absolute Efficiency

In order to get the get the efficiency of the setup, it was also necessary to deter-

mine the absolute efficiency for the detection of a single gamma-ray of energy Eγ .

Furthermore, it was important to know not only the photopeak efficiency, but the

single and double escape efficiencies as well since these lines were used in some of the

yield calculations. The simplest method to determine efficiency is to use standard

gamma-ray calibration sources. Because the gamma-ray energies of interest spanned

from 1.6 up to 7.1 MeV, it was not possible to exclusively use gamma-ray sources.

Gamma-rays from a 60Co source were used in addition to gamma-rays from the ex-

cited states of 28Si populated via 27Al(p,γ). The Ep=679 keV resonance was chosen

for the calibrations because the decay scheme was relatively straight forward, there

were no near-lying resonances that would be expected to contaminate the yield, the

total width was rather narrow so that a thick target yield was observed, and because

several transitions with gamma-rays close in energy to the gammas from 19F + p

were strongly populated.

The absolute efficiency is simply the ratio of the number of gamma-rays observed

to the number emitted. Of particular interest was the photopeak and escape effi-

ciencies, or the number of observed gamma rays where the total gamma-energy was

captured for the photopeak efficiency or total energy less the energy released from

positron annihilation in the case of single and double escape efficiency.
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60Co has a half-life of 1925.28 days [47], so the activity was effectively constant

during the time of the calibration, which took only a few hours. The source had a

reference activity of 10.0 μCi on 1 January 1969. The activity during the calibration

was determined by the simple radioactive decay law,

A(t) = A0 exp

(−t ln2

t1/2

)
. (3.3)

The total number of gamma-rays from the 60Co source was then determine by mul-

tiplying the activity by the elapsed time.

For the number of gamma-rays from each branch of the decay of 28mSi, the total

number of Si atoms created was first calculated. The total production of an excited

state Ex for an infinitely thick target is given by the relation

ωγ =
2ε

λ2
Y∞ [28] (3.4)

where ωγ is the resonance strength, ε is the stopping power, λ2 is the center of mass

wavelength, and Y∞ is the number of excited states produced per incident particle

for an infinitely thick target. While the target used in the experiment was not

infinitely thick, the target thickness was greater than ten times the total resonance

width, so it exhibited a full thick-target yield. Equation 3.4 can be rewritten as

Y∞ =
2π2λ̄2

ε
(ωγ). (3.5)

The stopping power ε was calculated using SRIM. The value of ωγ was taken from

reference [38]. Finally, λ̄2 is given by equation 1.19. It is then straight-forward

to calculate the number of 28Si produced per proton, and consequently the total

number of 28Si atoms in the chosen excited state.

Summing Corrections

Once the total number of de-excitations is known, by comparing the number of

observed gamma-rays of a given energy to the number known to have been emitted,
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the absolute efficiency can be determined. Because of the close geometry and large

volume of the HPGe detector, it was necessary to include a correction for summing

effects. To explain the concept of summing, the decay of 60Co will be used. It is

a simple 2—γ cascade with exactly one path to the ground state. Suppose that

the total energy of the first gamma-ray is captured in the detector. If the second

gamma-ray goes in a direction such that it does not interact with the detector, this

will unambiguously be identified as a photopeak for the first gamma-ray and the

efficiency calculated from this event would properly reflect that the the total energy

of the first gamma-ray was observed. Suppose instead, however, that the second

gamma-ray interacted with the detector as well. Then the energy recorded would

be greater that the total energy of first gamma-ray. An efficiency calculated based

on this event would incorrectly show that the detector had not seen the total energy

of the first gamma ray. Note that the amount of energy the second gamma-ray

deposited is irrelevant. Any amount of energy deposited by the second gamma-ray

will prevent proper identification of the first. Thus it is necessary to determine

the probability that, on the condition that the first gamma-ray deposited its total

energy in the detector, the second gamma-ray also deposited any amount of energy

in the detector. In the case of a simple 2—γ cascade, that correction is simply the

total efficiency of observing the second gamma. That is, the true yield of the first

gamma is given by

Ytrue(γ1) =
Yexp(γ1)

1 − εtot
γ2

(3.6)

where Yexp(γ1) is the observed yield of γ1. More generally, for a gamma-ray i in a

cascade, the true yield is given by

Ytrue(γi) =
Yexp(γi)

1 − ci
(3.7)
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where ci is the probability that any other gamma-ray in the cascade was observed

in the detector in addition to γi.

As is typical, the general case comes at the cost of additional complexity. All

of the gamma-rays in a cascade can be indexed from i = 1 to n. The choice of

indexing is not important, though it is typically convenient to define γ1 as the decay

with the highest energy decay from the resonant state ER
x . Then γ2 is defined as

the decay from ER
x with the second-most energy and so on until all decays from

the resonant state are exhausted. Indexing continues from the most energetic state

below ER
x that is populated by a cascade. A gamma-ray γi decays from a state Exi

with probability Pi. It is worth noting that the excited states Exi
are not necessarily

uniquely labeled. The branching ratio Bi is defined as the probability that a decay

from ER
x will include γi. This is different from Pi, which is the probability that

a decay from Exi
will include γi. With this indexing the correction factor ci for

gamma-ray γi can be written as

ci =
1

Bi

∑
αi

⎛
⎝
⎛
⎝∏

a(αi)

Pa(αi)

⎞
⎠
⎛
⎝−εi +

∑
a(αi)

εa(αi)

⎞
⎠
⎞
⎠ (3.8)

where

Bi ≡
∑
αi

⎛
⎝∏

a(αi)

Pa(αi)

⎞
⎠ . (3.9)

The sum over αi is a sum over all cascades that include γi. The index a(αi) indicates

a sum (or product) over all gamma-rays in a cascade αi. Note that a(αi) includes

γi, necessitating the somewhat clunky −εi term before the sum. The εi are the

total efficiencies for detecting γi. The superscript “tot” used above was omitted for

brevity. While a more complicated example will not be given here, the calculations of

the summing corrections and branching ratios for the 679 keV resonance in 27Al(p,γ)

and 60Co can be found and followed in Appendix D.

The total efficiencies were determined by integrating the energy dependent at-
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a) Large Face Shape b) Small Face Shape

Figure 3.8. On the left in panel a) is shown a the area used for the of the total
efficiency for a detector face larger than the actual clover. The region in blue (dark)
tangent to the purple detector was included. On the right in panel b) shown in green
(light) is the smaller detector area, lying entirely inside the actual detector volume,
except for the small area directly at the center which contributed minimally to the
solid angle.

tenuation coefficient for Ge over the solid angle subtended by the HPGe. The calcu-

lation assumed a rectangular crystal coaxial with the beam or source. Calculations

were done for rectangular faces that were both larger and smaller than the actual

crystal faces as illustrated in figure 3.8. The efficiencies showed a variation of 5%,

so the two values were averaged and a 3% error was assigned to the efficiency. The

method, both of calculating efficiency and determining the solid angle, is certainly

not exact, but it is sufficiently accurate for determining the summing corrections

[20]. By far, the largest source of uncertainty in the efficiency calibration came from

the uncertainty in the resonance strength for the 27Al(p,γ) reaction.

Once the summing corrections were made, the absolute efficiency was extracted

from the yield of the gamma-rays. The absolute efficiency as a function of energy

for the photopeak is shown in figure 3.9. The photopeak efficiency was fit in two
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Figure 3.9. The efficiency illustrated on the left and right is the same. It has been
shown both on a log plot as well as a linear plot in order to illustrate highlight the
shape of the fit and the data.

separate regions, above and below 3000 keV. This was the level at which the escape

lines started to make a contribution. The photo-peak efficiency was fit to a function

of the form

ε = a0 +
a1

Eγ
+

a2

E2
γ

. (3.10)

The choice of the fitting function was purely phenomenological. It does, however,

nicely reproduce the shape and curvature of the the measured values both in linear

and logarithmic scales. The goal of the efficiency calibration is to extract the effi-

ciency for the gamma-rays observed in the 19F + p reaction. These gamma-ray

energies fall between the calibration points. Since these can be obtained by interpo-

lating between the measured values and whatever the true shape of the efficiency,

it will be smooth, the decision to use a phenomenological fit is reasonable. The fit

of the high and low energy regions is also illustrated in figure 3.9
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Figure 3.10. The single-escape efficiency is illustrated together with a linear fit
to the data on the right. The left panel shows the double-escape efficiency. The
efficiencies were very linear in the region of interest.

The efficiencies for the single- and double-escape peaks were also determined.

Because of the higher energies necessary to observe these peak, there were fewer

calibration points available. That being said, the efficiencies were very linear in

the region of interest, so a linear fit was used to determine the efficiencies in those

regions. The escape efficiencies are shown in figure 3.10.

Considerable effort has been dedicated to determining the summing correction

factors for the gamma-decays of 28Si. It is important to say a few words about

why it is not necessary to make such corrections for the cascade from 20Ne. First,

the cascade from 20Ne was seen to be significantly simpler than the decay from

28Si. For one of the observed resonances, there was a weak (≈5%) branching to a

state other than the first excited state. For all other measured resonances, the only

branching which was observed was the R−→1 transition to the first excited state
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followed by decay to the ground state. Second, and perhaps more importantly,

the coincidence requirement, the geometry of the setup, and the sum-energy gating

condition effectively excluded the possibility of summing out of the 1.63 MeV line in

the HPGe detector. Recall the requirement for a “good” event to be looked for in the

HPGe. First, there had to be observed gammas both in a HPGe crystal in the clover

and a NaI(Tl) crystal within a 100ns window. Second, the total energy observed

from the HPGe elements and the NaI(Tl) crystals within that 100ns window had to

be in excess of 9.5 MeV. Because the decay was almost exclusively through a 2–γ

cascade, the only way to have a good event in the HPGe that is summed out is for

the primary to interact with the HPGe clover, deposit less than ≈2 MeV, scatter out,

and then deposit at least 7.8 MeV in a NaI(Tl) detector or to first hit the NaI(Tl),

depositing at least 7.8 MeV before scattering out and depositing energy in an HPGe

crystal. The energetic constraints are rather stringent, making it an unlikely event.

Furthermore, the detectors were positioned to minimize cross-talk–exactly the type

of event that would be needed for summing-out. If this is compared to the geometry

used with the BaF2 detectors described above in section 2.2, it becomes clear why

some of the changes were made. By not having detectors surrounding the HPGe

detector, the summing contributions for such a simple decay are made negligible.

Mention should also be made of the efficiency of the NaI(Tl) detectors. It was

necessary to make careful, energy-dependent efficiency calibrations for the HPGe

detector because there were gamma-rays of interest to be studied over a relatively

wide range of energies and the efficiency had a strong energy dependence. In the case

of the NaI(Tl) detectors, the basic question was “What is the efficiency for seeing

more than 7.8 MeV of energy from a gamma-ray with energy between 11.4 and 12.0

MeV of energy?” The range of energies was small. The range of acceptance was

large. Furthermore, the energy dependence of the efficiency of such large crystals
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with high-energy gamma-rays is expected to be fairly flat [31]. The only important

component of the NaI(Tl) efficiency is its effect on the coincidence efficiency. As a

result, the determination of the coincidence efficiency folds in the absolute efficiency

of the NaI(Tl) detectors. The relatively small energy dependence of the coincidence

indicates that the assumption that absolute efficiency of the NaI(Tl) detectors was

flat at the energies of interest was firm.

3.2 Fitting Systematics

There has already been rather lengthy discussion of the efficiency of various gating

conditions, decisions on timing windows, etc. It seems appropriate at this point to

actually show the results of these cuts and the resulting rather clean gamma-ray

yield. Figures 3.11, 3.12, 3.13, and 3.14 display the gamma-ray spectrum for two

different resonances with and without the gating conditions. Without question, if

the only goal of the experiment were to measure the 633 keV resonance, then the gain

in single-to-background is probably not great enough to justify the loss of efficiency.

That being said, the gated spectrum is certainly cleaner. It is even possible to

observe the transition to the second excited state which is typically buried in the

Compton continuum.

Compare this with the case in figure 3.13. Here the gamma strength is clearly

much smaller, making it impossible to isolate the 1.63 MeV transition. By applying

the gating conditions as was done to give figure 3.14, the weak transition suddenly

becomes much easier to observe. The gating technique does not remove all of the

6.13 MeV lines—in fact, they still are a majority of the spectrum. It does, however,

clean out most of the noise at lower energies so that with the high resolution of

the HPGe detector, the lines of interest are visible. It would have been possible

to further reduce the lines from (p,α), but at a cost of coincidence efficiency. The

93



0 2500 5000 7500 10000 12500 15000
Eγ in keV

10
0

10
1

10
2

10
3

10
4

R
aw

 Y
ie

ld

Single Yield at 632 keV Resonance

1200 1500 1800
0

2×10
4

4×10
4

1.63 (p,γ)

6.13 (p,α
2
)

6.917 (p,α
3
)

7.117 (p,α
4
)

11.8 (p,γ) R-->1

Figure 3.11. A gamma-ray singles spectrum is shown to illustrate the lines seen
during the experiment. The spectrum is for Ecm=632 keV. The inset is a linear look
at the region around the 1.629 MeV gamma-ray. The ratio of (p,γ) to (p,α) for this
energy is by far the best for any of the energies measured
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Figure 3.12. This is energy as shown before (Ecm=632 keV), but this spectrum is
gated on the Q-value and timing as discussed elsewhere. Note that the transition
from the second excited state is now very clear where it was hidden before.
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Figure 3.13. The gamma-ray singles for Ecm=324 keV presents significantly more
difficulty in isolating the 1.63 MeV transition from the first excited state. It is worth
noting that the small line seen in the inset is actually from 40K, a contamination
unavoidable in rooms with concrete.
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Figure 3.14. The true power of the gating conditions are seen here at the same
energy as figure 3.13. While before the 1.63 MeV line was completely obscured, it
now can be clearly seen.
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decision was made that the spectrum was sufficiently clean at this level and that

further gains in signal to background would would be too expensive to be practical.

3.2.1 Yield Extraction

The gamma-ray yield was extracted by fitting the background near the peaks with

a polynomial and then integrating the peak area. The background was subtracted

from the raw integration. For the 1.63 MeV line, a linear fit was sufficient. For most

of the other gamma-rays, a cubic was used. Each photopeak and escape line was in-

tegrated separately. All of the yields for the (p,α) channels were determine from the

singles spectrum that was taken in prescaling more. The yield for the (p,γ) channel

was determined from the gated spectrum. For the yield in the (p,α) channels, the

escape lines represented a significant fraction of the yield. The doppler broaden-

ing of the gamma-rays from the third and fourth excited states of 16O significantly

increased the uncertainty in the yield of these lines as it spread the events over

a range of 30-40 keV. It was an inconvenient accident that the fourth and second

excited state of 16O differed by about 1 MeV. As a result, neither the photopeak of

the (p,α2) nor the double-escape of the (p,α4) was usable. The yield for (p,α2) was

based on the observed single- and double-escape events. The yields for (p,α3,4) were

determined based on the photopeak and single-escape lines.

All of the yields were normalized to the integrated live charge. The (p,α) yields

were then multiplied by the prescaling factor in order to properly represent the yield

that would have been seen in a pure singles mode of running.

3.2.2 The Fitting Function

The yield was fit with a generalized version of equation 1.33. The energy range

covered experimentally ranged from Ecm =∼200-760 keV. The resonances included

in the yield fitting corresponded to center-of-mass energies of 211, 324, 461, 563,
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635, and 738 keV. The T=1 resonance at Ecm=1351 and the giant dipole resonance

(GDR) at Ecm ≈ 5000 keV were included in the fit though they were not measured

directly. The GDR made little contribution to the yield, but the 1351 keV resonance

turned out to be important to properly fit the high-energy tail of the (p,γ) dataset.

The total yield was the sum of the yield from the individual channels. One of the

major improvements in this measurement over previous measurements was that the

yield between resonances was measured so that the interference effects could be

observed. The interference cross-section for capture is

σint
i,j (E) = ±2 δ

lj
li

√
σi(E)σj(E) cos(φi − φj) (3.11)

where

σi(E) is the resonant cross − section,

and

φi = arctan

(
Γ

2(E − ER)

)
(3.12)

is the hard − sphere phase shift.

The sign of the interference term is a parameter that can only be fixed by mea-

suring the yield and determining when the interference is constructive or destructive.

All of the terms were integrated over the target thickness in energy. Figure 3.15

shows a hypothetical predicted yield curve as well as the resonant yield contribu-

tion from each of the included resonances. It is a hypothetical prediction because

target width and plateau height were fixed for the calculation, a useful assumption

for pedantic purposes. Note that the total yield is not simply the sum of the dif-

ferent resonant contributions. For simplicity, the interference components are not

illustrated in figure 3.15. Figure 3.16 shows selected resonances and the absolute

value of interference components. Visual inspection shows just how important the

inclusion of the interference components is in order to correctly fit the data. Near
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Figure 3.15. A hypothetical yield prediction is shown above for a target of fixed
FWHM = 8 keV is shown above. For this example, the target was assumed to be
indestructible. The interference components of the total yield are not illustrated.

the 324 keV and 461 keV resonances, the interference components are the second

largest component in the yield–thus the correct sign of that component is critical to

a proper fit.

In the discussion of the absolute efficiency calculations, the yield from a thick

target was given by equation 3.5. There is a similarly simple expression for the

thin-target yield when the target thickness is much less than the resonance width.

Because the resonance widths in the energy range of interest spanned from 900 eV

up to over 30 keV [2], it was not practical to choose a target thickness that was
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resonant component of several resonances was omitted to reduce the clutter. Note
that near the 324 keV and 461 keV resonances, the interference is a significant part
of the total yield.
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either thick or thin for all resonances. Furthermore, in order to include the interfer-

ence terms, the simple forms are not appropriate. As a result, it was necessary to

numerically integrate the Breit-Wigner form of the cross section with interference

over the target thickness. The energy dependence of the energy loss was determined

from the energy loss tables of SRIM-2003 [51].

Due to the careful experimental systematics, the target profile, both in plateau

height and full-width-at-half-maximum had already been parameterized as a func-

tion of target number and total charge. This allowed a yield prediction for each data-

point that used the same target profile as was seen by the beam. The curves shown

in figure 3.15 and figure 3.16 were very smooth and well-behaved. The datasets

exhibited more scatter which could be accounted for largely as target effects.

The computational intensity of this technique recommended neglecting the spread

of the beam due to finite beam resolution and straggling. The bulk of the fitting

was done with the functions g and w replaced by Dirac-Delta functions, collapsing

the integration to a single integration over target thickness, reducing the calculation

time many fold. As an additional concession to the need for rapid calculations, a

table of the penetrabilities for each channel was calculated in keV steps over the

energy range of interest at the beginning of the calculation and the penetrability

needed for any given energy in the integration was interpolated from the table.

The penetrability is a very smooth function and this should have introduced no

instability in the fit.

Five reaction channels–(p,γ1), (p,γ2), (p,α2), (p,α3), and (p,α4)–were monitored

over the experiment. Full datasets were available for the (p,γ1) and the (p,α2)

channels. The other α channels exhibited strengths at some of the resonances and

could have been more cleanly distinguished were it not for the doppler shift of the

decays which spread the yield over about 30 keV. It was still possible to extract

102



resonance parameters, but the spectrum was not as clean as could be hoped. The

(p,γ2) was neglected as it only showed strength near the 632 resonance. In order

to relate the normalized yield to the theoretical yield there remains a normalization

factor which depends upon the stopping power, the target thickness and stoichiom-

etry, and the detection efficiency. The relative normalizations between the different

channels depend solely on the ratios of the absolute efficiencies. In the case of the

(p,γ) channels, the coincidence efficiency also has to be included. It was decided

to use the resonance strengths in the (p,α2) and (p,α4) channels from the thesis of

Lorenz-Wirzba [37] to fix the resonance parameters Γp and Γα2 for the 211, 324, and

460 keV resonances. The strength also fixed the partial widths Γα4 of the 324 and

460 keV resonances. That work was a rather comprehensive measurement of the

19F(p,αi) reactions using Ge(Li) detectors. The systematics of that measurement

were very robust, recommending the reliability of the resonance strengths. The

partial widths were determined from the resonances strengths by making the basic

assumption that Γp � Γαi
. Since the resonance strength is defined as

(ωγ)i =
(2J1 + 1)

(2J0 + 1)(2j0 + 1)

ΓpΓi

ΓT
(3.13)

where the J ’s are defined as before, it was straightforward to deduce the partial

widths.

3.2.3 The Fitting Methodology

With these values, the (p,α2) yield for energies below 480 keV was fit to with the

yield function, allowing the resonance energies and the normalization constant to

vary to achieve a minimum χ2 deviation where χ2 for a particular channels is given

by

χ2 =

N∑
i=1

(
Yi − Yt(Ei)

δYi

)2

[40] (3.14)
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where

i runs over all data-points,

Yi is the normalized yield for run i,

Yt(Ei) is the predicted yield at energy Ei,

δYi is the statistical uncertainty in the measurement Yi,

and

Ei is the energy of run i.

The total width was calculated internally as the sum of the partial widths to prop-

erly reflect the effect the changing partial widths would have on the total width.

In addition to the six channels already mentioned, the contribution from inelastic

scattering was included as a constant width. The inelastic width only contributed

significantly to the width of the 1350 keV resonance. The resonance energies were

treated as variables for several reasons. First, the experiment was not designed to

measure the resonance energy. Second, slight changes in the resonance energy often

made significant improvements in the quality of fit as the front edge would move to

the front edge of the data.

With the now fixed normalization constant, the fit region was opened to the

entire energy range, releasing the energies of the higher energy resonances as well as

the partial widths for the higher energy resonances. Once a new minimum was found,

the process was iterated to find a better normalization constant. The signs of the

interference terms were manually varied to further minimize χ2. These iterations

continued until the parameters stabilized with respect to further minimizations.

The fitting of the (p,α2) set was used to determine the normalization, the observed

resonance energies for all resonances, and the proton and α widths for the 563,

632, and 739 keV resonances. The energies and widths of the two high-energy,
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unobserved resonances were taken from literature values. A complete listing of the

which datasets were used to determine which parameters can be seen in table 3.3.

Once a best set of parameters was determined, the (p,α3) channel was considered.

The α3 partial widths and interference signs were varied to provide a minimized χ2.

The same minimizations were made for the α4 channel, subject to the constraints

imposed by the Lorenz-Wirzba strengths. The α3 and α4 channels were important

to the determination of the resonance parameters of the other channels because they

contribute to the total width. Their contributions for some resonances were as much

as 20-30%. With these new parameters, the fitting returned to the (p,α2) channel

to iterate the effect of a potentially different total width. Once all of these fits had

stabilized, the (p,γ1) channel was fit with all of the Γγi
and interference signs being

open variables. Because the gamma widths were so small relative to the particle

widths, they had no effect on the total width and consequently no effect on the fit

of the other sets. The gamma width of the 1351 keV resonance was also varied to

fit the high energy side of the 632 keV resonance. The minuit [5] minimization

routine from the cernlib package was used for the minimization of the resonance

parameters. This technique was highly iterative as can be seen, but tended to be

fairly robust, with later iterations only making parameter adjustments on the order

of a percent. The final resonance parameters are shown in table 3.5. The fits to the

datasets are shown in figures 3.17, 3.18, 3.19, and 3.20.

The fits are generally very good, though there is some deviation at high energies

in the (p,α3) and (p,α4) channels. It is most likely the tail of a high energy resonance

that was not included in the calculation.
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Figure 3.17. The fit to the 19F(p,γ1) data is shown above. The gamma-ray yield is
from the gated 1.63 MeV line in the clover HPGe detector.

TABLE 3.3

DATASETS USED FOR RESONANCE CONTRIBUTIONS

Channel Norm ER ΓT Γp Γα2 Γα3 Γα4 Γγ1

(p,α2) × × × × ×
(p,α3) × ×
(p,α4) × ×
(p,γ1) ×

NOTE: The dataset used for the determination of the resonance parameters is indicated. The
proton and α2 widths for the 221, 324, and 461 keV resonances were taken from reference [37].
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Figure 3.18. The fit to the 19F(p,α2) data is shown above. The yield is from the
singles lines in the clover HPGe.
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Figure 3.19. The fit to the 19F(p,α3) data is shown above. The yield is from the
singles line in the clover HPGe.
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Figure 3.20. The fit to the 19F(p,α3) data is shown above. The yield is from the
singles line in the clover HPGe.
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3.3 Determination of Uncertainty

Until this point, the analysis has focused on the extraction of the resonance param-

eters and the corrections that are necessary in order extract these values. Little has

been said about the confidence that should be attributed to these values nor the

effect that the treatment of the data has had on the uncertainty of the final values.

The final error in the resonance parameters comes from several different compo-

nents, some more easy to attribute than others. There is the statistical error in the

measurements, uncertainties due to fitting, and systematic uncertainties due to the

uncertainty in prior measurements that were used as references. Each of these com-

ponents will be discussed separately and then their effect on the final measurements

will be given.

3.3.1 Statistical Uncertainties

The observed number of a given energy for a given measurement obeys a Poisson

distribution so that the 1-σ uncertainty is given by δN =
√

N where N is the

observed number of events [10]. Because background was subtracted from peak, the

errors of the background-subtracted peak area and the background area must be

added in quadrature in order to give the error in the net peak area. This process

was carried out automatically by jtek. The excitation function which was fit was

given by the events per 10−8C of live charge. In order to determine the error of

a data-point in the excitation function it was assumed that the error in the live

charge was negligible. Since the average values of the live charge ranged from 105

to 107 while typical net peak areas range from 40 up to 1000, it was a reasonable

assumption. The error in the excitation function data-point was simply given by

the error in the peak areas divided by the live charge in units of 10−8C. This was

the error in the date values used for the calculation of χ2 in equation 3.14.
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3.3.2 Fitting Uncertainties

A significant advantage of using the minuit minimization package was that it can be

asked to calculate the error in the minimization. A more complete discussion of the

method minuit uses for the determination of error can be found in the Long Write-

Up for the minuit package [5]. Both the minos asymmetric and hesse parabolic

errors were calculated. The errors were generally very small relative to the system-

atic uncertainties, and the differences between the parabolic and asymmetric errors

were generally less than 5% of either error value. For this reason the parabolic errors

were used for the final determination of the fit parameter uncertainty.

3.3.3 Systematic Uncertainties

The systematic uncertainties in these measurements deal generally with effects that

will scale all of the values up or down together. They include the normalization

to the Lorenz-Wirzba data, the target corrections, and efficiency corrections. They

were the largest source of uncertainty in the data and will be addressed individually.

Because the systematic effects scaled the total yield, the final systematic uncer-

tainty is

δ(Y )sys

Y
=

√√√√∑
i

(
δAi

Ai

)2

(3.15)

where the Ai are the individual systematic correction factors and Y is the normalized

yield.

Lorenz-Wirzba Normalization

Four resonance strengths from the work of Lorenz-Wirzba [37] were used to provide

an absolute normalization for the measurements. Any uncertainty in the Lorenz-

Wirzba values will directly introduce an uncertainty in the determination of the

present values. The resonance strengths reported by Lorenz-Wirzba are shown in
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TABLE 3.4

LORENZ-WIRZBA RESONANCE STRENGTHS

ER,lab (keV) Channel (ωγ) (eV) Percent Error

224 (p,α2) (3.73±0.3) × 10−3 8%
340 (p,α2) 5.12±0.25 4.9%
340 (p,α4) (1.3±0.1) × 10−1 8%
484 (p,α2) 1.88±0.015 0.80%
484 (p,α4) (3.89±0.04) × 10−1 1.0%

table 3.4.

The uncertainty reported for the 484 keV resonance is suspiciously small, espe-

cially since the resonances were measured relative to the alpha yield of the 340 keV

resonance. Thus the error in the normalization was conservatively set to 8%, the

maximum uncertainty in any of the Lorenz-Wirzba values.

Target Correction Uncertainties

The importance of outliers, or data-points that fall rather far outside of the expected

uncertainty, for the target corrections should not be underestimated. Inspection of

figure 3.5 shows that while the fit of the plateau height versus total charge correctly

interprets the trend, there still remains significant deviation. Part of the reason lies

in the fact that the measurement of the target profile was very sensitive to the area

of the target being scanned. The energy the beam deposited in the target layer

was a function of energy, so it was reasonable to expect some energy dependence

on the degradation as well. Because the some of the deviation was expected to be

real and not merely statistical, it was deemed inappropriate to set the uncertainty

to uncertainty in the fit which was less than 2%. Instead, the uncertainty was set

to 10% of the total plateau height. The plateau height corrections were generally

112



less than 30%, so an uncertainty in the final plateau height of 10% will account for

a significant, though still reasonable deviation from the predicted plateau height.

Efficiency Correction Uncertainties

There are two efficiency corrections which were made, one for the coincidence ef-

ficiency and the second for the relative efficiency for different energy gamma-rays.

The uncertainty in the coincidence efficiency was reported with the determination

of the coincidence efficiency in equation 3.2, but only contributes to the (p,γ) mea-

surements. The relative uncertainty in the coincidence efficiency correction was

3%.

The uncertainty in the relative efficiencies depends on both the branching ratios

and error in the fits. The errors in the fits were all less than 1% and thus, were ne-

glected. Unfortunately, Meyer et al. did not provide uncertainties for the branching

ratios of the primaries for the 27Al(p,γ) reaction [39]. They do provide some uncer-

tainties for secondary decays, but since those decays are populated by the primaries,

such information was of limited value, especially since the gamma-rays of most in-

terested were 2–γ cascades where the secondary was a ground-state transition. A

5% uncertainty was assigned to the uncertainty in the relative efficiencies.

3.4 Resonance Parameters

The final values for the resonance parameters are finally meaningful and can be

seen in table 3.5. As expected, the systematic uncertainties dominated the total

uncertainty in the values.
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TABLE 3.5

DEDUCED RESONANCE PARAMETERS

ER,lab (keV) Channel Γi (eV) Systematic Fitting Final

224 α3 6.0 0.84 0.11 6.0 ± 0.85
224 α4 N.O. — — —
224 γ1 N.O. — — —

340 α3 13.6 1.9 0.2 13.6 ± 1.9
340 γ1 0.13 0.02 0.003 0.13 ± 0.02
340 (ωγ)γ1 (2.8 ± 0.4)×10−4

484 α3 58.8 8.2 0.5 58.8 ± 8.2
484 γ1 0.26 0.04 0.006 0.26 ± 0.04
484 (ωγ)γ1 (6.6 ± 1.1)×10−4

597 proton 16.7 2.3 0.02 16.7 ± 2.3
597 α2 37300 5200 56 37300 ± 5200
597 α3 80.5 11.3 3.1 80.5 ± 13.7
597 α4 197 28 3 197 ± 28
597 γ1 1.49 0.21 0.18 1.49 ± 0.28
597 (ωγ)γ1 (8.4 ± 1.6)×10−4

669 proton 6720 940 47 6720 ± 940
669 α2 26 4 0.13 26 ± 4
669 α3 1.5 0.2 0.04 1.5 ± 0.2
669 α4 7.3 1.0 0.04 7.3 ± 1.0
669 γ1 0.44 0.06 0.003 0.44 ± 0.06
669 (ωγ)γ1 (3.3 ± 0.7)×10−1
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CHAPTER 4

RESULTS AND CONCLUSIONS

4.1 Comparison of Resonance Parameters

The new measurements recommend weaker resonance strengths in the (p,γ) channel,

which can be expected to generally decrease the likelihood of breakout from the CNO

cycle. A comparison of the results of this experiment to previous measurements can

be seen in table 4.1. When possible, the results of previous measurements have

been converted into resonance strengths for comparison. Since the strength is the

term that enters directly into the calculation of the stellar reaction rate, it has the

most direct impact. As a note on conventions, the energies discussed previously in

the analysis were in the center-of-mass frame. For the comparison of the results, a

switch will be made to the lab frame so that the measurements can be compared

directly.

There are several general comments which should be made. First, comprehen-

sive measurements are important. The advantages of having multiple channels to

constrain the fitting of the data cannot be overstated. Second, advances in detectors

have made attribution to the proper reaction clearer. Advances in computational

speed have made it possible to include interference components which must be nu-

merically integrated. In section 3.2.2 the importance of the interference terms was

discussed. Previous authors did not have the luxury of fast computation nor did

they have the data between resonances in order to see the interference.
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The history of the measurements of the 19F + p reaction is tragedy of partial

measurements and unpublished results, leading to the schizophrenic datasets that

result in such disparate resonance parameters. Each measurement will be considered

separately in order to try to come to some understanding of the shortfalls of the

measurements.

It is reasonable to start with the Sinclair measurement, the earliest shown. The

measurements made by Sinclair as well as other authors [21] in the late 1940s and

early 1950s resulted in an adopted gamma width of 2.2 eV. This width was de-

termined by the ratios of the cross-sections of the (p,γ) to the (p,α). The alpha

width reported in reference [3], the light isotope compilation at that time, was 110

eV. None of the later compilations report a width for the α2 channel. The present

measurement gives a value of only 26 eV. It is thus unsurprising that the gamma

widths differ as much as they do. It is worth noting that yield ratio obtained in this

experiment, 1.7%, is in relatively good agreement with that of Sinclair. The prob-

lem is that different cross-sections were measured for the alpha channels. There are

a few possible explanations for the difference in the alpha width. First, the isospin

of the state populated by the 669 keV resonance was not known, resulting in an

inaccurate assumption that most of the width from this state came from the (p,α2)

channel [12]. If it was assumed that the alpha channel carried most of the width,

then it would force the gamma channel to be very strong in order to account for

the observed cross-section. On the other hand, if the proton channel carries most of

the width (as is the case), the gamma channel can be much more modest and the

expected capture cross-section would still be the same. Secondly, all previous pub-

lished measurements, in particular, those done in the late 40s and early 50s treated

the yields as if they came solely from a single resonance, neglecting the effect of

tailing from near-by resonances. There is a resonance at 597 keV with a total width
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of >30keV. As can be seen in figure 3.18, the 669 resonance sits on top of the tail

from the 597. The use of thick targets, typically ideal for absolute cross-section

measurements, will only make this problem worse. Further measurements did not

revisit the gamma-ray partial width for the 669 resonance.

The Subotić dataset was measured relative the to yield from the 669 keV state.

They used the resonance width from Ajzenberg-Selove’s 1972 compilation, exactly

the values that were in disagreement before. If the Subotić data is normalized to

resonance strength of 0.33 eV obtained in this measurement, the agreement is quite

reasonable, with the exception of the 340 keV resonance. The excitation function

obtained by Subotić for the 340 keV resonance disagrees with the excitation function

obtained in this measurement. Fortunately, Subotić included the excitation function

so that they could be compared. His yield for the 340 keV resonance is approximately

twice that for the 484 resonance. Furthermore, Subotić calculated the strengths

based on the ratio of the areas under the resonance shape, basically assuming a

very thick target without correcting for the total resonance width. The targets use

by Subotić were of comparable thickness to the total width of the 669 resonance.

The total widths of the resonances in this region range from less than 1 keV up to

30 keV, meaning that corrections for target thickness and total width are essential.

Since the total widths for the 340 and 484 differ by a factor of three, this effect

should be significant.

The measurements by Keszthelyi and Berkes had the significant advantage over

other authors of measuring multiple channels. This helps to remove the uncertainty

in the dominant component of the total width. The gamma-widths are about a

factor of two higher than those seen in this work with a notable exception of the

597 keV resonance. No excitation functions are shown, so it is not possible to

comment directly on the interpretation. Other authors looked for but did not see
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Figure 4.1. The predicted yield the 507 keV resonance with a 12 eV partial width
for Γγ1 is illustrated. Clearly this is inconsistent with the data.

such strength. Subotić reports a weaker value of 4.14 eV, which would be pushed

further downward if the smaller strength seen in this work were to be used. Clifford

saw no contribution at 597 [16]. No evidence was seen in this measurement of a

width approaching 12 eV. For comparison, figure 4.1 shows the predicted yield for

this experiment had the gamma partial width been 12 eV. It has been suggested

that there were impurities in the target which contaminated the spectrum. The

deviation of the strengths of Keszthelyi and Berkes from those reported here arose

primarily from the proton widths which Berkes and Keszthelyi took from the 1959

compilation [3]. The only measured proton width was for the 484 keV state.

This reduction of the resonance strengths for the (p,γ) channel results in even

smaller stellar reaction rates for 19F(p,γ), closing the lid completely on breakout

from the CNO cycle. This validates the typical assumption that breakout reactions
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need not be included as Ne production is negligible.

4.2 Astrophysical Implications

When this work was begun, the thought was that there were several scenarios in

which the assumption that the CNO was closed could be flawed. The resonance at

597 keV is very broad, meaning that the anomalous strength observed by Berkes

et al. could well tail down into astrophysically relevant temperatures. No mea-

surements had been made of the lowest-lying (and thus closest to stellar burning

temperatures) known resonance at 224 keV. Constructive resonant interference could

enhance the reaction rate by as much as 50%. It is important to remember that

even a small leak would be important because the CNO cycle is a catalytic process.

The same seeds get used over and over again. Even a leak of 0.1%, in a scenario

where the same seeds were used thousands of times, would have a huge impact.

What was observed, instead, seems to be closing the door at every opportunity

for breakout. The resonance strengths for all of the resonances were lowered. No

strength was seen at all for the 224 keV resonance. The anomalous strength Berkes

et al. observed for the 597 resonance appears to be just that–an anomaly in their

measurement. The interference terms appear to be destructive.

All of the effects work to push the reaction rate down. Figure 4.2 shows the effect

of the new measurement on the reaction rate compared to the standard values of

Caughlin and Fowler [14]. There is a reduction across the board of almost a factor

of four in the rate.

A similar effect is seen on the rate of stellar 20Ne production. A simple isobaric,

isothermal reaction network code was used to calculate the expected yield using the

reaction network given in appendix B. The code was courtesy of Frank Timmes [46]

and modified to include breakout to 20Ne. The resulting 20Ne production can be
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seen in figure 4.3.

There are two things to look for. One, does the production contribute signifi-

cantly to the amount of neon that is present at the end of the CNO cycle? Two,

does the neon production impact the amount of CNO isotopes present in the star?

The answer to both of these questions is a resounding “No.” The mass-fraction of

neon in a modern star is on the order of 10−3. At best, a production on the order

of 10−10 is observed, a full seven orders of magnitude smaller. The same situation

exist for the question of whether CNO isotopes are depleted. Any depletion is on

122



the order of one part in 108 over the entire CNO burning time scale, so small that

it cannot have any possible effect on the CNO burning times or temperatures.

Together this says that CNO is completely closed. Even though a significant

portion of the CNO isotopes start as 16O, already outside of the first CNO cycle, even

if the CNO-II and CNO-III cycles are open at certain temperatures, the 19F(p,α)

reaction firmly closes the CNO cycle with no breakout to 20Ne.
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APPENDIX A

ELECTRONICS ABBREVIATIONS
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TABLE A.1

ELECTRONICS ABBREVIATIONS

Abbreviation Manufacturer Description
BNC PB-4 Brookhaven Nucl. Corp. Precision Pulse Generator
J 65 Jorway NIM Register
KS 3610 Kinetic Systems Hex Scaler
L AL688 Lecroy Level Adapter
L 429A Lecroy Logic FIFO
L 4434 Lecroy 16 Channel Scaler
L 4616 Lecroy ECL-NIM-ECL Level Translator
LF 4000 Ortec Logic FIFO
O AD811 Ortec Octal 2k ADC
O AD413A Ortec Quad 8k ADC
O CF8000 Ortec Octal CFD
O CO4020 Ortec Quad Four Input Logic Unit
O GG8000 Ortec Octal Gate Generator
O RD2000 Ortec Rate Divider
O 439 Ortec Current Digitizer
O 566 Ortec TAC
O 567 Ortec TAC/SCA
O 572 Ortec Spectroscopy Amplifier
O 579 Ortec Fast Filter Amplifier
O 660 Ortec Dual 5kV HV Power Supply
O 671 Ortec Spectroscopy Amplifier
O 672 Ortec Spectroscopy Amplifier
O 863 Ortec Quad Timing Filter Amplifier
PS 744 Phillips Scientific Quad Linear Gate FIFO
Prescaler Custom ND module TTL Prescaler
PS 726 Phillips Scientific Level Translator
PS 752 Phillips Scientific Logic FIFO with Master Veto
PS 754 Phillips Scientific Quad Four-Fold Logic Unit
PS 755 Phillips Scientific Quad Four-Fold Logic Unit
PS 778 Phillips Scientific 16 Channel Variable Amplifier
PS 779 Phillips Scientific 32 Channel Scintillator Amplifier
T 454 Tennelec Quad CFD
TC 952 Tennelec HV Power Supply
W 404 Wiener D Quad Sum and Invert
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APPENDIX B

CNO NETWORK

For simplicity, the time derivative d
dt

is indicated by an upper dot. Secondly, rather

than looking at the evolution in terms of total abundance, it will be tracked as

molar fraction Yi, defined as the moles of substance i per gram of total material.

In order to distinguish the rates for the breakout reactions, a superscript has been

added to indicate whether the α-channel rate or the γ-channel rates is needed. If

no superscript is present, then the γ-channel should be assumed.
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Ẏ12C = −λ1H12CY1HY12C +λα
1H15NY1HY15N

Ẏ13N = −λ13NY13N +λ1H12CY1HY12C

Ẏ13C = −λ1H13CY1HY13C +λ13NY13N

Ẏ14N = −λ1H14NY1HY14N +λ1H13CY1HY13C +λα
1H17OY1HY17O

Ẏ15O = −λ15OY15O +λ1H14NY1HY14N

Ẏ15N = −λα
1H15NY1HY15N −λγ

1H15NY1HY15N +λα
1H18OY1HY18O

+λ15OY15O

Ẏ16O = −λ1H16OY1HY16O +λγ
1H15NY1HY15N +λα

1H19F Y1HY19F

Ẏ17F = −λ17FY17F +λ1H16OY1HY16O

Ẏ17O = −λα
1H17OY1HY17O −λγ

1H17OY1HY17O +λ17FY17F

Ẏ18F = −λ18FY18F +λ1H17OY1HY17O

Ẏ18O = −λα
1H18OY1HY18O −λγ

1H18OY1HY18O +λ18FY18F

Ẏ19F = −λα
1H19F Y1HY19F −λγ

1H19FY1HY19F +λγ
1H18OY1HY18O

Ẏ20Ne = +λγ
1H19FY1HY19F

Ẏ4He = +λα
1H15NY1HY15N +λα

1H17OY1HY17O +λα
1H18OY1HY18O

+λα
1H19FY1HY19F

Ẏ1H = −λ1H12CY1HY12C −λ1H13CY1HY13C −λ1H14NY1HY14N

−λα
1H15NY1HY15N −λγ

1H15NY1HY15N −λ1H16OY1HY16O

−λα
1H17OY1HY17O −λγ

1H17OY1HY17O −λα
1H18OY1HY18O

−λγ
1H18OY1HY18O −λα

1H19FY1HY19F −λγ
1H19FY1HY19F

Several comments should be made about the network. First, a few comments

can be made about individual isotopes. Note that hydrogen is only destroyed in this

network. Since the process under consideration is a hydrogen burning mechanism,

that is to be expected. Second, helium is only produced and never destroyed. At

CNO-cycle temperatures, the rate for helium burning reactions is so slow that any
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helium consumption is negligible. Several β-unstable isotopes are produced in the

burning sequences. In the above network, they are always assumed to decay to

stable isotopes before any further proton-capture reaction takes place. Finally, the

network is assumed to stop at 20Ne.
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APPENDIX C

MAGNET REFRESHING PROCEDURE

The following instructions were given to all accelerator operators throughout the

experiment.

Always go Down in B-Field Because of the Hysteresis of the magnet, there is
a significant energy shift based on magnet history. Therefore, it is important
that we only go down in Energy. If you need to go up, use the following
procedure to make sure that the hysteresis curve is reset.

1. The Analyzing magnet setting should be 10.14. If it is not, change it to
that value.

2. In slit control, change energies to whatever energy you want to get to +5
keV (as in you should be 5 keV above desired energy).

3. Switch the coarse ON

4. Take the charging down, rather quickly. The terminal voltage should
drop to zero. Once the Charging is at zero, turn off the Charging.

5. Turn the Master Reference down to 0.00. Wait 5 minutes.

6. Turn the Master Reference up to 75.00. Wait 5 minutes.

7. Turn the Master Reference down until the Energy (slit control) reads
your desired energy +5 keV.

8. Bring the Charging back up until slit control grabs the beam.

9. It may take a few minutes for everything to equilibrate. Continue to add
charge as necessary to keep the stabilizer balanced.

10. The magnet is now refreshed to run at the new energy. Run as needed,
only going down.
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APPENDIX D

SUMMING CORRECTION COEFFICIENTS

The details for the summing corrections for the 670 keV resonance in 27Al(p,γ) and

the decay of 60Co are given here.

D.1 28mSi, ER
x =12239.4 keV

The level scheme for the decay with gamma-ray indices is shown below. Only

those decays with a probability of at least 1% were included in the table and the

calculations.

The values of the summing corrections, decay probabilities, and branching ra-

tions are given in table D.1. The terms will be shown below.

The terms for the summing coefficients ci are given below.

c1 =
1

B1
(P1P14) ε14

c2 =
1

B2

(P2P13P14) (ε13 + ε14)

c3 =
1

B3

(P3P12P14) (ε12 + ε14)

c4 =
1

B4

{(P4P10) ε10 + (P4P11P14) (ε11 + ε14)}

c5 =
1

B5

{(P5P8P14) (ε8 + ε14) + (P5P9P13P14) (ε9 + ε13 + ε14)}

c6 =
1

B6
(P6P7P14) (ε7 + ε14)
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Figure D.1. 28mSi Decay Schematic, ER
x =12239.4 keV
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TABLE D.1

28mSi DECAY SUMMING PARAMETERS, ER
x =12239.4 keV

27Al(p,γ), ER=679 keV
No. Ex Ef Eg Pi Bi εi ci

1 12239.4 1779.03 10460.4 0.43 0.43 0.0839 0.0932
2 12239.4 4617.86 7621.5 0.26 0.26 0.0828 0.181
3 12239.4 6887.65 5351.8 0.014 0.014 0.0832 0.177
4 12239.4 7416.26 4823.1 0.21 0.21 0.0836 0.0884
5 12239.4 9164.68 3074.7 0.026 0.026 0.0871 0.216
6 12294.3 9795.95 2443.5 0.017 0.017 0.0895 0.176
7 9795.95 1779.03 8016.9 1.00 0.017 0.0829 0.183
8 9164.68 1779.03 7385.7 0.55 0.0143 0.0828 0.180
9 9164.68 4617.86 4546.8 0.45 0.0117 0.0839 0.268
10 7416.26 0.0 7416.3 0.94 0.197 0.0828 0.0836
11 7416.26 1779.03 5637.2 0.06 0.0126 0.0830 0.177
12 6887.65 1779.03 5108.6 1.00 0.014 0.0834 0.176
13 4617.86 1779.03 2838.8 1.00 0.272 0.0879 0.180
14 1779.03 0.0 1779.0 1.00 0.760 0.0932 0.120

NOTE: The details for the decay of the 12239.4 keV state of 28Si are given, including the decay
probabilities and total efficiencies for each line. The energies of the states are taken from [24] while
the decay scheme is from [39].
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c7 =
1

B7

(P6P7P14) (ε6 + ε14)

c8 =
1

B8

(P5P8P14) (ε5 + ε14)

c9 =
1

B9

(P5P9P13P14) (ε5 + ε13 + ε14)

c10 =
1

B10
(P4P10) ε4

c11 =
1

B11
(P4P11P14) (ε4 + ε14)

c12 =
1

B12
(P3P12P14) (ε3 + ε14)

c13 =
1

B13
{(P2P13P14) (ε2 + ε14) + (P5P9P13P14) (ε5 + ε9 + ε14)}

c14 =
1

B14
{(P1P14)ε1 + (P2P13P14) (ε2 + ε13) + (P4P11P14) (ε4 + ε11)

+ (P5P8P14) (ε5 + ε8) + (P5P9P13P14) (ε5 + ε9 + ε13)

+ (P6P7P14) (ε6 + ε7) }

The terms for the branching ratios Bi are given below.

B1 = P1

B2 = P2

B3 = P3

B4 = P4

B5 = P5

B6 = P6

B7 = P6P7

B8 = P5P8

B9 = P5P9

B10 = P4P10
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Figure D.2. 60mNi Decay Schematic, Ex=2505.7 keV

B11 = P4P11

B12 = P3P12

B13 = P2P13 + P5P9P13

B14 = P1P14 + P2P13P14 + P3P12P14 + P4P11P14 + P5P8P14

+ P5P9P13P14 + P6P7P14

D.2 60Co → 60mNi, Ex=2505.7 keV

The level scheme for the decay with gamma-ray indices is shown below. The level

scheme is for state of 60Ni that the Co populates.

The values of the summing corrections, decay probabilities, and branching ra-

tions are given in table D.2. Though they are trivial, for completeness, the calcula-

tion of the terms will be shown below.

The terms for the summing coefficients ci are given below.
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TABLE D.2

60mNi DECAY SUMMING PARAMETERS, Ex=2505.7 keV

60Co Source
No. Ex Ef Eg Pi Bi εi ci

1 2505.7 1332.5 1173.2 1.00 1.00 0.0979 0.0966
2 1332.5 0.0 1332.5 1.00 1.00 0.0966 0.0979

NOTE: The summing corrections for the 60Co source are shown. All energies and decay probabil-
ities for 60Co are taken from reference [47].

c1 =
1

B1

(P1P2) ε2

c2 =
1

B2

(P1P2) ε1

The branching ratios Bi are given below.

B1 = P1P2

B2 = P1P2
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APPENDIX E

JN RUNNING PARAMETERS

The parameters for the JN during a typical run are listed here. These were taken

from a run at 11:50 am, 9 December 2004. The settings are values that were set

via Labview while the readback values were read either in Labview or an external

meter.
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TABLE E.1

JN RUNNING PARAMETERS

Parameter Setting Readback Value
Tank Pressure (p.s.i.) 162
Base Vacuum (torr) 8.5×10−7

Beam Slits Left (Zero) 99350 (98950)
Beam Slits Right (Zero) 00004 (98604)
Beam Slits Top (Zero) 99857 (99457)
Beam Slits Bottom (Zero) 99605 (99205)
Anaslits Left (Zero) 00086 (98950)
Anaslits Right (Zero) 99116 (98950)
Anaslits Top (Zero) 03035 (98950)
Anaslits Bottom (Zero) 02830 (98950)
Ion p
Beam Line (p,γ)
GVM (kV) 400
Corona Current (μA) 20
Column Current (μA) 14
Charging (kV) 6.05
Up Charge (μA) 97
Focus 72
Extractor 235
Magnet (Ion Source) 140
Gas 163
Beamline Vacuum (torr) 1.64×10−6

Quad A 2.76
Quad B 2.46
Vertical Steerer -8.00
Anamag Setting 10.14
Anamag Current (A) 9.43
JN Master Reference 4306
Anamag Cup (μA) 40
High Energy Slit (μA) 0
Low Energy Slit (μA) 2
Switching Magnet Coarse 067
Switching Magnet Fine 728
Target Quad A 461
Target Quad B 283
Target MR Coarse 399
Target MR Fine 196
Gaussmeter (kG) 0.9928
Horizontal Steerer -0.80
Vertical Steerer #2 -0.12
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