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ABSTRACT

It has been thought that a possible site for the astrophysical r-process could

be the shock fronts of supernovae explosions. In which case, the lack of sta-

ble nuclei with mass numbers of A=5 and 8, hinder the re-assemblage of seed

nuclei from the free α-particles and nucleons. Consequently, the two reactions

6He(α,n)9Be and 4He(2n,γ)6He, could be of importance to any simulation of

the r-process. Therefore, the rate of the 6He(α,n)9Be reaction was calculated

by considering the resonances of 10Be. An updated energy level description was

used to calculate the reaction rate as a function of temperature. For tempera-

tures 1.0 < T9 < 5.0 this gave values of the order 10−3 − 101 cm3 s−1 mol−1.

There are two mechanisms by which the 4He(2n,γ)6He reaction can occur. The

first is by the successive capture of the two neutrons. The second is by dineu-

tron capture. A numerical study was carried out of these rates. Previously only

the successive capture rate had been estimated. Using an improved numerical

quadrature, and a more recent value for B(E2, 2+→ 0+) in 6He, the resonant

rate was found to be 37% larger than previous estimates. However the direct

capture rate matched the previous estimate. The dineutron capture rate is esti-

mated here for the first time. It was found that the dineutron rate exceeded the

successive capture rate by 2 to 3 orders of magnitude. Once these reaction rates

had been calculated, the reactions 6He(α,n)9Be and 4He(2n,γ)6He could be in-

cluded in r-process simulations. Three simulations of the r-process were run.

The first did not include either reaction, the second and third both included

the 4He(2n,γ)6He and 6He(α,n)9Be reactions, however in one the 4He(2n,γ)6He

rate was set to the previous lower estimate of the reaction rate. The simulation

with the previous 4He(2n,γ)6He rate and the simulation with no 4He(2n,γ)6He

rate produced identical final element abundance curves, thus confirming that

the previous 4He(2n,γ)6He rate estimate did not provide a significant flow to-

wards heavier elements. The simulation with the new, increased, 4He(2n,γ)6He

rate calculated here, did show an increased flow towards heavier nuclei, with
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50% of the nuclei produced having A ≥ 95, as opposed to the other simulations

which had 50% of nuclei with A ≥ 83. However, the inclusion of the 2 reac-

tions, 4He(2n,γ)6He and 6He(α,n)9Be, causes a reduction in neutron abundance,

which means the simulation terminates at a lower mass. The simulations did

not run up to elements such as Bi and U. Further simulations should be run to

investigate whether shorter timescales, and increased entropy, increase the mass

number at which the simulations terminate. Also, none of the simulations run

in this work duplicate any of the characteristic r-process peaks, since the simula-

tions terminate before A=195; in actuality, they terminate at A∼130. The only

peak that might have been reproduced is the A=80 peak, but no pronounced

peak is visible.
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‘There’s coffee in that nebula!’

- Captain Kathryn Janeway
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1 INTRODUCTION

Fusion processes in stars account for the nucleosynthesis of elements up to

iron[1]. However, the abundances of heavy elements cannot be explained by

charged-particle-induced fusion reactions, as these are inhibited by the increas-

ing charge of heavier nuclei. Therefore, the heavy elements must be produced

by some other process. That process is neutron capture.

There are two types of neutron capture, the s-process and the r-process. The

s-process, or slow-neutron-capture process, is so called because the time between

successive neutron captures exceeds the β-decay half lives of the unstable nuclei

involved. Therefore this process takes place in nuclei in, or adjacent to, the

valley of stability of the Segré chart. (See Figure (1).)

When neutrons are being captured much faster than the nuclei can β-decay,

the process is classified as the r-process, or rapid-neutron-capture process. An

r-process nucleus captures neutrons until the neutron binding energy approaches

zero, this is called the neutron drip line, as shown in Figure (1). A nucleus on

the drip line must then β-decay before neutron capture can continue. Therefore,

unlike the s-process, the r-process proceeds along or near the drip line, far from

the valley of stability. Unusually stable nuclei which contain a magic number of

neutrons, or protons, are called waiting-point nuclei. These nuclei stall the flow

towards heavier nuclei, with their long β-decay half lives. Both the s-process

and r-process can be held up by waiting point nuclei.

A good approximation of r-process yields can be obtained by the subtraction

of s-process yields from the observed solar elemental abundances. This r-process

abundance curve exhibits distinct maxima at A=80, A=130 and A=195[1].

Therefore any r-process simulation needs to successfully reproduce these peaks

and the relative abundances. The s-process exhibits peaks several mass units

above these r-process peaks. This is due to the r-process reaching neutron magic

numbers in lower Z nuclei. It is this fact, and that there are some naturally oc-

curring radioactive elements, such as U and Th, which are above where the
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Figure 1: A Ségre chart from [5], modified to show the valley of stability as well
as the neutron and proton drip lines.

s-process terminates, that lead physicists to the conclusion that there are two

separate nucleosynthetic processes producing the heavy elements. Of the nuclei

with A ≥ 70, there are 27 that can only be produced by the r-process[1].

The astrophysical site of the r-process is still an unanswered question. One

favoured possible location is in the shockfronts of supernovae, as proposed by

Woosley et al[2]. In this model the r-process occurs in the post-collapse phase

of a type II supernova explosion, in which a neutron star is formed. After the

neutron star formation and the shock heating of outer core material, neutrino

heating occurs in the wake of the shock-front. This causes a high entropy hot

bubble to form, which has a high proton to baryon ratio. The neutrino heat-

ing of this baryonic material causes movement. This neutrino induced mass

outflow is called a neutrino-driven wind, and it is this that is believed to be

a possible astrophysical site for the r-process. This baryonic matter is in Nu-

clear Statistical Equilibrium (NSE) and is initially composed of free α-particles

and nucleons. The abundance distribution remains in NSE, but the neutrino
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wind shifts it towards higher masses by the recombination of α’s, protons and

neutrons. However, there are no stable nuclei with mass numbers of 5 and 8.

(See Table (1).) This causes a bottle-neck in the flow towards heavy nuclei

because the reaction is controlled by the 3-particle fusion processes of 3 α’s and

2α + n, which bridge these two mass numbers. It has been suggested that a

series of two-neutron capture processes on 4He and 6He[3][6] could overcome

this problem, since both 6He and 8He have unusually long halflives as they are

halo nuclides. However, recent r-process simulations showed that the current,

suggested reaction rates, were insufficient to provide a substantial flow towards

heavy nuclei[7].

These mass numbers could also be bridged by the combination of the

4He(2n,γ)6He and 6He(α,n)9Be capture reactions. The 6He(α,n)9Be reaction is

preferable to the 6He(2n,γ)8He reaction as the stable nucleus 9Be is produced,

which then links up to the 9Be(α,n)12C reaction to provide a flow towards

heavier nuclei. Therefore rates need to be known for the 4He(2n,γ)6He and

6He(α,n)9Be reactions.

nuclide t1/2 / s [4]

3He stable
4He stable
5He 7.6 × 10−22

6He 0.807
7He 2.9 × 10−21

8He 0.119
9He 1.5 × 10−21

10He 2.7 × 10−21

5He 7.6 × 10−22

5Li 3.0 × 10−22

8He 0.119
8Li 0.838
8Be 6.7 × 10−17

8B 0.770
8C 2.0 × 10−21

Table 1: Halflives of Helium isotopes and isobars of mass number 5 and 8.
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2 THE REACTION RATE OF 6He(α,n)9Be

The reaction 6He(α,n)9Be is a compound nucleus reaction,

6He + α → 10Be? →9 Be + n, (1)

where 10Be? is an excited state of the compound nucleus 10Be. Such reactions

occur when the incident particle, in this case the α-particle, has a small impact

parameter compared with the radius of the target nucleus, in this case 6He.

(6He has an extended nuclear radius since it is a halo nuclide.) This means that

the α-particle is more likely to interact with one nucleon, rather than the entire

target nucleus. The recoiling α-particle and nucleon go on to have successive

interactions with other nucleons in the target, meaning that the energy of the

incident α is shared among all the nucleons. The average increase in energy per

nucleon is not enough to ‘evaporate’ them from the nucleus. However, there is

a statistical distribution of energies, so there is a small probability that one or

more nucleons will gain a sufficient fraction of the energy to escape the nucleus.

The intermediate nucleus, after the α absorbtion and before neutron emission, is

a compound nucleus. The decay of a compound nuclear state is almost entirely

independent of its mode of formation.

2.1 THE ENERGY LEVELS OF 10Be

The 6He(α,n)9Be reaction proceeds through excited states in 10Be, therefore it

is important to know the energy level structure of this nucleus. The threshold

for this reaction is at 7.41 MeV, so only those energy levels above this threshold

are considered here. The level scheme of Ajzenberg-Selove (1988)[8] has become

outdated due to the many experiments performed since that data was evaluated.

Figure (2) shows the revised energy level diagram used in the present reaction

rate calculation.

There is a long-established state at 7.542 MeV, which is the first level that

has the 6He+α channel open to it. There is also a long-established state at
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Figure 2: An energy level diagram for 10Be, showing the energy levels above
the 6He + α threshold. The dashed line indicates that there is no conclusive
evidence for that level’s existence.
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9.27 MeV, but this state has Jπ = 4− so the 6He + α channel is not open

due to parity conservation. There is some debate about whether the next state

quoted by [8] at 9.4 MeV exists, or whether it is the state later found at 9.64

MeV[9][10]. Since there is no conclusive evidence that a state at 9.4 MeV exists,

it was not included in this reaction rate calculation. There is experimental

evidence for states at 9.56[9][10] and 9.64 MeV[11][13]. These levels are close

together and one is within the quoted experimental error on the other. In order

not to overestimate the reaction rate, it was decided that only one of these levels

would be included in the calculation. The 9.64 MeV Jπ =2+ state was included.

The next energy level at 10.15 MeV does not appear in [8]. It was originally

quoted as 10.2 MeV Jπ = 4+[9] but was later found to be at 10.15 MeV with

Jπ =3−[11][13]. The level at 10.57 MeV is long established, however its spin and

parity are in question. Jπ =4+ was assumed for this calculation since a 12C-like

prolate model for 10Be calls for a 4+ state in this region[11] and the study of

the 7Li(α,p)10Be (3H transfer) reaction found evidence for a possible 4+ state

at either 10.15 or 10.57 MeV[12][14]. Since the 10.15 MeV state has been found

to have Jπ =3−[11] then the 10.57 MeV state is assumed to be the 4+ state.

The next energy level at 11.76 MeV has yet to be assigned values for spin or

parity, but values postulated so far include 4+[10] and 5−[12]. These are both

high spin values, and bearing in mind this level is at high energy, its contribution

to the cross-section at low energy is expected to be negligible. However, an

assignment of Jπ = 4+ to this state would make interference possible with the

10.57 MeV state. Therefore, it was included in the calculation as a Jπ = 4+

state so that the role of this interference could be investigated.

In [12], the study of the reaction 12C(12Be,α6He)14C, found evidence of

three new resonances in 10Be at 13.2, 14.8 and 16.1 MeV. The resonance widths

were measured to be ∼1 MeV each, and other resonances in this energy region

have widths ≤ 500 keV, indicating that the natural widths of these states are

being dominated by either the experimental resolution, or by contributions from

several states. One of these resonances could be the 6+ member of the 0+

6



rotational band, since this is predicted to be at 15.3 MeV[12]. However, since

definite widths have not yet been determined for theses states and the proposed

spins for these states are high, and would therefore present a high angular

momentum barrier, indicating the cross-section contribution from these states

at low energy would most likely be negligable, they were not included in the

6He(α,n)9Be rate calculation.

There are also three possible energy levels at 17.12, 17.79[8][10][11][13] and

18.55 MeV[8][10], all with Jπ = 2−. For the 17.12 and 17.79 MeV states the

spin and parity was assigned from a comparison with 10B, as in [10]. Out of

these three levels the 17.79 MeV state has the most evidence pointing towards

its existence, however these levels are not open to the 6He+α entrance channel

due to parity conservation.

Those levels included in the calculation are indicated by a * in Figure (2).

2.2 SPECTROSCOPIC FACTORS FOR THE 6He(α,n)9Be

REACTION RATE CALCULATION

Table (2) contains the data necessary to calculate the 6He(α,n)9Be reaction

rate.

The spectroscopic factors for the 9.64 and 10.57 MeV levels were approxi-

mated from the relative height of the peaks in Figure (3) in [9] . The 7.452 and

10.15 MeV spectroscopic factors had to be estimated.

The 10.15 MeV state does not decay into the 9Be+n channel[9][12], so a

C2Sα was chosen so that the majority of the total width was equal to Γα. The

10.57 MeV state generally does not decay into the 6He+α channel[12]. This

state appears to be a member of a rotational band consisting of the 6.2 MeV

Jπ = 0+, 7.542 MeV Jπ = 2+ and 10.57 MeV Jπ = 4+. Since the 10.57 MeV

state does not decay into the α channel then it is reasonable to assume that the

other members of the band also do not. Therefore spectroscopic factors were

estimated for the 7.542 MeV state to reflect this.
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ER/MeV Jπ ΓTOT Γα(ER) Γn(ER) σ(ER)
(C2Sα) (C2Sn)

7.542 2+ 6.3×10−3 8.64 ×10−8 6.299 ×10−3 16.58µb
(0.1) (3.05 ×10−3)

9.64 2+ 0.291 0.034 0.26 96.8 mb
(2.23×10−2) (3.21×10−2)

10.15 3− 0.310 0.281 0.028 0.104 b
(0.40) (8.51×10−3)

10.57 4+ 0.150 0.01 0.14 96.7 mb
(5.03×10−2) (0.23)

11.76 4+ 0.121 0.104 0.017 0.170 b
(0.15) (1.3×10−2)

Table 2: Data on resonances in 10Be used to calculate the 6He(α,n)9Be reaction
rate. The total width, ΓTOT , and the partial widths, Γα(ER) and Γn(ER), are
all given in MeV. The spectroscopic factors corresponding to each partial width
are given in brackets below the partial widths. The cross-section on resonance,
σ(ER), is also given.

2.3 REACTION RATE THEORY

SPIN AND PARITY CONSERVATION

There are two factors affecting whether a resonant state can be formed by a

given entrance channel; these are angular momentum conservation and parity

conservation.

Angular momentum conservation can be described as

Jt + Jp + L = J , (2)

where Jt and Jp are the spins of the target and projectile nuclei, J is the spin

of the resonant state in the compound nucleus, and L is the relative angular

momentum between the projectile and the target nuclei. A resonant state also

cannot decay to a given exit channel, unless Equation (2) is obeyed. In the case

of decay from a resonant state to an exit channel, Jt and Jp become the spins

of the 2 particles in the exit channel.

Parity conservation is described as
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π(Jt)π(Jp)(−1)L = π(J ). (3)

In the reaction 6He(α,n)9Be, both the 6He and the α-particle have ground state

spin and parity of 0+. This means that the 6He+α entrance channel cannot form

states in 10Be with Jπ=n−even or Jπ=n+
odd. (Where neven is an even integer and

nodd is an odd integer.)

PARTIAL WIDTHS

Due to the Heisenberg uncertainty principle,

∆E∆t ≥
h̄

2
, (4)

a resonant state with a lifetime, τ , has associated with it, an energy width, Γ,

by the relation

Γ =
h̄

τ
. (5)

Γ can be determined experimentally by measuring the full-width-half-maximum

(FWHM) of the resonant cross-section peak. A resonant state, with multiple

exit channels, has associated with each exit channel a partial width, Γi. The

total width of a given quantum state is given by the sum over the partial widths,

ΓTOT =
∑

i

Γi, (6)

which in the case of the 6He(α, n)9Be reaction is given by

ΓTOT = Γα + Γn. (7)

Here the subscript α refers to the α-decay channel and the n indicates the neu-

tron channel. The α and neutron widths can be calculated from the transmission

values Tα and Tn,
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Γα = C2Sα Tα and Γn = C2Sn Tn. (8)

The C2Sα,n are the respective spectroscopic factors. The transmission values

were calculated in the RATE program (See Appendix I). Spectroscopic factors

are a measure of the probability that the nucleus will be in the correct spatial

configuration for the reaction to occur. Transmission values are a measure of

the probability that the projectile will be able to tunnel through the angular

momentum and Coulomb barriers of the target nucleus.

THE BREIT-WIGNER FORMULA

The energy dependent cross-section can be described by the Breit-Wigner for-

mula, which applies to narrow isolated resonances. For a resonance at energy

ER, and with spin-parity Jπ, the formula is[1]

σ(E) = πλ̄2ω
ΓαΓn

(E −ER)2 + (ΓTOT /2)2
, (9)

where ω is the spin statistical factor. The spin statistical factor reflects the

fact that an excited state of spin J , in a compound nucleus, has 2J + 1 mag-

netic substates, and that the probability of the reaction occuring increases with

the number of final states which can be formed. The entrance channel has

(2Jp + 1)(2Jt + 1) magnetic substate combinations, therefore the probability of

the target and projectile nuclei being in a particular substate is inversely pro-

portional to (2Jp + 1)(2Jt + 1). Multiplying these two factors together gives ω,

the spin statistical factor, which has been arrived at by summing over all the

final states and averaging over the initial states. Therefore, for a final state J ,

ω is given by

ω =
2J + 1

(2Jp + 1)(2Jt + 1)
. (10)

The λ̄ in Equation (9) is the de Broglie wavelength of the incident particle, given

10



by

λ̄ =
mp + mt

mt

h̄

(2mpEl)
1

2

. (11)

Here the subscripts p and t on the spins (Jp and Jt) and the masses (mp and mt)

indicate the projectile and the target nuclei respectively. El is the laboratory

energy of the projectile.

The term ΓαΓn/[(E-ER)2+(ΓTOT /2)2] in the Breit-Wigner formula (Equa-

tion (9)) is related to the probability, P (E), of observing the the system in the

energy range E to E + dE,

P (E)dE =
dE

(E −ER)2 +
(

ΓT OT

2

)2 . (12)

This relation comes from assuming a nuclear potential of the form V + V ′,

where V is the nuclear potential which gives stationary states1 and V ′ is a

small perturbing potential responsible for decay transitions. By solving the

Schrödinger Equation for the potential V, the wave functions of the stationary

states can be obtained. These wave functions can then be used to calculate the

probability of transitions between stationary states, due to V ′. The transition

probability is given by Fermi’s Golden Rule,

Λ =
2π

h̄
|V ′fi|

2ρ(Ef ), (13)

where

V ′fi =

∫

Ψ?
fV ′Ψidv. (14)

Ψf and Ψi are the wave functions describing the final and initial states of the

system. V ′fi is the matrix element of the perturbing interaction, V ′. ρ(Ef ) is the

density of final states, and is therefore the number of available final states per

unit energy interval at Ef . The density of final states takes into account that

1A stationary state is a state with no width, ΓTOT =0, since it doesn’t decay. A stationary
state is stable for all time, t, hence the term stationary.
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the final state might not be isolated, this quantity is dependent upon the type

of decay being discussed. The number of final states accessible to the system is

dnf=ρ(Ef )dEf .

The Schrödinger Equation for the time independent potential, V , gives a sta-

tionary state wave function Ψa(r), therefore the time-dependent wave function

for the stationary state, a, is given by

Ψa(r, t) = Ψa(r)e−iEat/h̄, (15)

where Ea is the energy of state a. Since the probability density of finding

the system with position, r, at time, t, in a state, a, is |Ψa(r, t)|
2, which is

independent of time for a stationary state. The radioactive decay law demands

that the probability of decay decreases with increasing time as ∼ e−t/τa , where

τa is the mean lifetime of the state. Therefore the time dependent probability

is

|Ψa(t)|2 = |Ψa(t = 0)|e−t/τa (16)

and the wave function Ψa(r, t) is given by

Ψa(r, t) = Ψa(r)e−iEat/h̄e−t/(2τa). (17)

The distribution of energy states is given by the Fourier transform of e−t/(2τa),

and the probability of observing the system in the energy interval E to E + dE

is given by the square of this distribution, thus giving Equation (12).

CALCULATING THE CROSS SECTION

The cross-section on resonance, σR, is given by

σR = σ(ER) = 4πλ̄2
R

ωγ

ΓTOT
, (18)

where the resonance strength, γ, has been introduced, where
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γ =
ΓαΓn

ΓTOT
. (19)

Therefore, it follows that the energy-dependent cross-section can be calculated

for any energy, E, as

σ(E) = σR

(

ER

E

)

Γα(E)

Γα(ER)

Γn(E)

Γn(ER)

(ΓTOT (ER)/2)2

(E −ER)2 + (ΓTOT (E)/2)2
. (20)

Equation (20) only calculates the cross-section contribution from a single reso-

nance. Since there are many levels in 10Be, the cross-sections from each non-

overlapping level must be summed to give the total cross-section

σTOT (E) =
∑

i

σi(E). (21)

INTERFERENCE IN THE CROSS SECTION

When summing the σi’s, interference between pairs of states with the same Jπ

can be taken into account by the equation

σint(E) = σ1(E) + σ2(E)± 2
√

σ1(E)σ2(E)δ, (22)

where

δ = arctan

(

ΓTOTR1
(E)/2

ER1 −E

)

− arctan

(

ΓTOTR2
(E)/2

ER2 −E

)

. (23)

Here the subscripts 1 and 2 indicate the two energy levels between which the

interference can occur.

There are two pairs of energy levels for which interference may be relevant

in 10Be?. These are the 9.64 MeV and 7.542 MeV, Jπ =2+ states and the 10.57

MeV and 11.76 MeV, Jπ = 4+ states. Although the interference between the

Jπ =4+ states was significant, it was, nevertheless, negligible at the low energies

from which the reaction rate was calculated. The interference between the

13



Jπ =2+ states was also found to be negligible since the states are well separated

in energy. Therefore, these interference effects have no practical significance in

the present example.

CALCULATING THE REACTION RATE

The reaction rate is given by

r = NtNp v σ(v). (24)

Since the cross-section is a function of energy, it is also a function of velocity,

σ(v), where v is the relative velocity between the target and projectile nuclei.

It is assumed that the target is initially stationary. Nt and Np are the number

density of the target and projectile nuclei respectively. Equation (24) is the

product of the effective area of target nuclei per cm3, given by Ntσ(v), and

the flux of the incident projectile nuclei per cm3, given by Npv. The rate, r, is

usually given in units of cm−3 s−1.

The reactions discussed here occur in a gaseous environment, in which the

particles have a distribution of velocities, φ(v), where

∫

∞

0

φ(v)dv = 1. (25)

φ(v) dv is the probability that the relative velocity between the target and

projectile will be in the range v to v + dv. Therefore the product vσ(v) in

Equation (24) has to be folded with the velocity distribution to give a value of

vσ(v) averaged over the velocity distribution,

<σv>=

∫

∞

0

φ(v)vσ(v)dv. (26)

The total rate, r, is now given by

r = NtNp <σv> . (27)
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The quantity <σv > is the reaction rate per particle pair and is given in units

of cm3 s−1. It is < σv > that must be calculated to implement a reaction in

r-process simulations.

Despite the high temperatures involved in the r-process (up to 1010K =

10GK = 10T9), the material in the neutrino-driven-wind is non-degenerate and

moves non-relativistically. This means that the velocity distributions, of both

the target and projectile nuclei, are given by a Maxwell-Boltzmann velocity

distribution,

φ(vt) = 4πv2
t

( mt

2πkT

)
3

2

exp

(

−mtv
2
t

2kT

)

, (28)

and

φ(vp) = 4πv2
p

( mp

2πkT

)
3

2

exp

(

−mpv
2
p

2kT

)

. (29)

The velocities, vt and vp, can be converted to the centre-of-mass reference-frame

velocities, v and V respectively, giving

φ(v) = 4πv2
( µ

2πkT

)
3

2

exp

(

−µv2

2kT

)

, (30)

and

φ(V ) = 4πV 2

(

M

2πkT

)
3

2

exp

(

−MV 2

2kT

)

, (31)

which has made use of the reduced mass, µ = (mpmt)/(mp +mt), and the total

mass, M = mp + mt, has been introduced. Substituting into Equation (26)

gives

<σv> =

∫

∞

0

∫

∞

0

φ(V )φ(v)σ(v)vdV dv, (32)

=

∫

∞

0

φ(v)σ(v)vdv

∫

∞

0

φ(V )dV, (33)
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=

∫

∞

0

φ(v)σ(v)vdv, (34)

since both Maxwell-Boltzmann velocity distributions are normalised to 1, as in

Equation (25). Substituting Equation (30) into Equation (34) gives

<σv>= 4π
( µ

2πkT

)
3

2

∫

∞

0

v3σ(v) exp

(

−µv2

2kT

)

dv. (35)

Then, substituting in for v, using E = 1
2 µ v2, for the centre-of-mass energy,

gives

<σv>=

(

8

πµ

)
1

2 1

(kT )
3

2

∫

∞

0

σ(E)E exp

(

−E

2kT

)

dE. (36)

2.4 RESULTS AND DISCUSSIONS

Figure (4) shows the dependence of the total cross-section on the centre-of-mass

energy, for the 6He(α,n)9Be reaction. Both axes are logarithmic and the cross-

section decreases rapidly as the energy approaches zero. The lowest energy

peak is the 7.542 MeV energy level. The other peaks, at higher energy, are the

9.64, 10.15 and 10.57 MeV levels in 10Be. Figure (4) also shows the individual

cross-section contributions from each resonance. This shows that the 7.542 MeV

energy level dominates the cross-section at low incident energies (E < 0.3 MeV)

whilst the other peaks dominate at higher energies.

Figure (4) presents the calculated reaction rates as a function of temperature

for the 6He(α,n)9Be reaction. The reaction rate curve is not smooth because

of the resonances in the cross-section. A Functional fit was found so that the

reaction rate could be included in r-process simulations. (See Appendix III for

further details.)

2.5 CONCLUSION

The temperature dependence of the 6He(α,n)9Be reaction rate was determined.

A FORTRAN program was written to calculate the total cross-section by sum-
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T9 NA <σv>TOT

0.5 1.44× 10−5

0.8 9.99× 10−5

1.0 2.38× 10−4

1.5 1.55× 10−3

2.0 2.81× 10−2

2.5 2.37× 101

3.0 1.03× 100

4.0 6.32× 100

5.0 1.82× 101

Table 3: This table shows the calculated total reaction rate in cm3 s−1 mol−1

for different temperatures in GK, for the reaction 6He(α,n)9Be.

ming the cross-section contributions from the different energy levels in 10Be.

The Breit-Wigner formula was used to calculate the cross-sections from the in-

dividual resonances. Temperatures in the region of 1.0 ≤ T9 ≤ 5.0 yield reaction

rates of the order of 10−3 to 101 cm3 S−1 mol−1.
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3 THE REACTION RATE OF 4He(2n,γ)6He

Two mechanisms are discussed here, by which the reaction 4He(2n,γ)6He can

take place. These are successive neutron capture (SNC) and simultaneous neu-

tron (dineutron) capture (DNC). For the purposes of this work the symbol 2n is

used to represent the dineutron in nuclear reactions. It is assumed that dineu-

tron is a neutral particle that behaves like a neutron except it has double the

mass.

SUCCESSIVE CAPTURE OF 2 NEUTRONS

1.797 2+

-0.89 He4 + n

He5
3/2-

+ n

-0.06

He
6

0+

He4 +   n20.973

E / MeV

Figure 5: Diagram showing the successive capture of 2 neutrons on 4He.

In [3], Goerres et al. estimated the reaction rate for the successive capture

of two neutrons on 4He. The intermediate nucleus, 5He, is unbound, the lowest

state being a 3
2

−

resonance. However, there can nevertheless be an equilibrium

abundance of 5He, on which the second neutron can be captured to form 6He.

This forms an excited 2+ state in 6He, 1.8 MeV above the ground state. This

Jπ = 2+ state is below the 1 neutron threshold, but is open to decay by 2n

emission, therefore the 5He(n,γ)6He reaction can proceed through the low energy
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tail of this broad resonance. This reaction is described by the equations below,

4He + n + n → 5He + n → 6He? → 6He + γ, (37)

→ 4He + 2n. (38)

DINEUTRON CAPTURE

DNC differs from SNC since both the neutrons are captured on the 4He simul-

taneously. The two neutrons are assumed to have formed a localised dineutron.

Like 5He, the dineutron is unbound. However the experimentally determined

n-n scattering cross-section exhibits a ‘virtual’ state near zero energy, indicating

that the dineutron state is close to being bound. Once the dineutron is cap-

tured on the 4He, the 1.8 MeV resonance in 6He is formed and the reaction then

proceeds in the same way as for the successive capture route, as shown in the

following equation

4He + n + n → 4He + 2n → 6He? → 6He + γ. (39)

THE GAMMA DECAY OF 6He

The 1.8 MeV Jπ=2+ state can γ-decay into the 0+ ground state. γ-decay

is caused by oscillating charge or current distributions in the nucleus, which

are associated with electric or magnetic multipole moments[5]. The type of

transition observed depends on angular momentum and parity conservation. A

photon must carry away at least 1 unit of angular momentum. The multipole

order of the radiation, L, is numerically equal to the angular momentum of

the photon. Since no one has ever observed a magnetic monopole, and the

electric monopole is simply the electric charge of the nucleus, which does not

vary with time, the lowest multipoles possible are the magnetic and electric

dipoles. Thus meaning the photon must carry away a minimum of 1 unit of

angular momentum. The parity of a transition is given by
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πM (L) = (−1)L+1 and πE(L) = (−1)L. (40)

Where πM and πE are the parities of magnetic and electric transitions, respec-

tively.

Therefore, in the case of 6He, Jπ=2+ → 0+ transition, only electric quadrupole

radiation is observed. However, in the case of a 2n being directly captured into

the ground state of 6He, other multipole radiations are possible, since this mech-

anism does not go through the 2+ resonance. In fact when calculating the direct

capture cross-section for dineutron capture on 4He, it was found that E1 (elec-

tric dipole) transitions provided the largest cross section, and was therefore the

dominant γ-decay mechanism.

In [3] a value of B(E2,2+→0+)=0.57 e2fm4 for the electric quadrupole tran-

sition strength was used to calculate the γ-decay width, Γγ ,

Γγ =
2(L + 1)

ε0L[(2L + 1)!!]2

(

Eγ

h̄c

)2L+1

B(E2, 2+ → 0+). (41)

Here Eγ is the energy of the emitted γ-decay photon, which in the case of

resonant capture, is equal to 1.8 MeV. In [15] a value of B(E2,0+→2+)= (3.2 ±

0.6) e2fm4 was determined experimentally from the three-body breakup of 6He.

The B(E2,0+→2+) is related to the B(E2,2+→0+) by the relation

B(E2, 2+ → 0+) =
1

(2L + 1)
B(E2, 0+ → 2+), (42)

=
1

5
×B(E2, 0+ → 2+), (43)

= 0.64 e2fm4. (44)

Therefore a new γ-decay width of 9.88 µeV, calculated using Equation (41), was

used in the following work.

21



DIRECT CAPTURE

The second step in the reaction 4He(2n,γ)6He, (either 5He+n or 4He+2n) can

proceed via direct capture. Direct reactions are also known as peripheral reac-

tions since they occur at the surface of the target nucleus[5]. The cross-section

for direct reactions, such as direct capture, increases with energy as the de

Broglie wavelength of the projectile decreases with energy. A smaller de Broglie

wavelength, comparable to the size of a nucleon, rather than the target nucleus

as a whole, is more conducive to direct reactions.

The direct capture cross-section for the 4He(2n,γ)6He reaction was initially

calculated in a program called JEZEBEL (See Appendix I). JEZEBEL uses a

hard sphere model of the nucleus and a diffuse Woods-Saxon potential to cal-

culate the cross-section. A diffuseness of a=0.6 fm was used and the optimal

well depth was found in the program. The formalism for JEZEBEL is described

in [23], except that the square-well potential has been replaced with a Woods-

Saxon. Modelling the nucleus as a hard sphere is adequate only for reactions

with a high Coulomb and/or angular momentum barrier. The JEZEBEL pro-

gram showed that electric dipole (E1) transitions were dominant, providing a

cross-section 5 orders of magnitude larger than electric quadrupole (E2) tran-

sitions. Therefore only the E1 cross-section was considered. However, there is

no Coulomb barrier for a dineutron and there is only an angular momentum

change of 1 unit, therefore assuming the nucleus to be a hard sphere is not suf-

ficient. Therefore, the direct capture cross-section was calculated by Mengoni,

as in [25].

The cross-section was calculated from[25]

σ2n,γ =
16π

2h̄
k3

γ ē2|Qi→f |
2, (45)

where kγ=Eγ h̄c and ē is the effective charge for E1 neutrons/dineutrons, given

by
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ē =
−eZ

A
. (46)

The cross-section is determined by the matrix elements

Q
(1)
i→f =< Ψf |T̂

E1|Ψi >, (47)

where T̂ E1 is the electric dipole operator and Ψi and Ψf are wave functions

describing the initial and final states respectively. The Mengoni direct capture

cross-section was smaller than that calculated in JEZEBEL, but it was of the

same form. The Mengoni cross-section was not calculated over a sufficiently

large range of energies to determine the reaction rate up to 10T9. Therefore the

JEZEBEL cross-section was scaled down to match the Mengoni cross-section.

The Mengoni cross-section was on average 25% smaller than the JEZEBEL

cross-section.

3.1 TWO-STEP CAPTURE THEORY

Both SNC and DNC are two-step reactions, consequently the reaction rate for

both these reactions is described by a double integral,

N2
A <1pp>= N2

A

∫

E1

d <(p, p)> (E1)

dE1

2h̄

Γ(E1)

[
∫

E2

d <p, γ > (E1, E2)

dE2
dE2

]

dE1,

(48)

where the integrands are given by

d <σv>

dE
=

√

8

πµ

1

(kT )
3

2

σ(E) exp

(

−
E

kT

)

, (49)

where p indicates particle. This is the same notation as that used in [3]. <1pp>

is the three-body reaction rate. In the case of successive capture <(p, p)> refers

to the rate of capture of the first neutron on 4He and E1 is the collision energy

of this first neutron, while < p, γ > refers to the rate of capture of the second
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neutron on 5He and E2 is the collision energy of this neutron. Γ2(E1) is the

energy dependent width of the intermediate nucleus, which in this case is the

width of the 3
2

−

state in 5He. In the case of dineutron capture the width of the

intermediate state would be the width of the dineutron virtual state. In which

case, < (p, p) > now refers to the rate of formation of the dineutron, E1 is the

neutron collision energy, < p, γ > refers to the dineutron capture rate on 4He,

and E2 is the dineutron collision energy.

3.2 THE CALCULATION

In [3] a FORTRAN program called TWOSTEP was used to calculate the SNC

rate. (More details on the program TWOSTEP are available in Appendix I.)

This program was adapted so that it could be used to calculate the SNC rate

more efficiently and then later adapted further to enable the calculation of the

DNC rate.

The subroutines originally performing the integrations in Equation (48) in

TWOSTEP used a fixed step-size and, for the program to perform to the re-

quired accuracy, the execution time was considerable. These integration sub-

routines were replaced by a subprogram from the CERN library, which uses

adaptive Gaussian quadrature to calculate the value of an integral. This sub-

program varies the step size across the interval, depending on how quickly the

function being integrated is changing. This enabled the program to run much

faster, and consequently the reaction rate could be calculated to higher accuracy

and the limits of integration extended.

3.3 RESULTS AND DISCUSSIONS

SUCCESSIVE NEUTRON CAPTURE

The updated value for B(E2,2+ → 0+), combined with the greater accuracy of

the new integration subprogram, gave the results shown in Figure (6).

Figure (6) shows the original RC values published in [3], and the new values,
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Figure 6: Reaction rate against temperature in GK for the successive capture of
2 neutrons on 4He. The squares indicate the values published in [3], the circles
indicate the new values.

which were calculated for the same temperatures. On average the new values

are 37% larger than the previous estimates. Table (4) shows the RC values used

to produce Figure (6), as well as the direct capture (DC) rate published in [3].

Although the new values are larger, they are the same order of magnitude as

the original estimates. Since the original estimates were not sufficient to provide

a substantial flow towards heavy nuclei in r-process simulations[7], it is evident

that the new values would not significantly change that.

DINEUTRON CAPTURE

The dineutron reaction rate was calculated by adapting the TWOSTEP program

(See Appendix I.) used to calculate the SNC rate. In the case of DNC the

first step in the reaction is the formation of the dineutron from its constituent

neutrons. The second step is the capture of the dineutron on 4He. A fit to
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program.

0 1 2 3 4 5 6 7 8 9 10

Centre of Mass Energy / MeV

0

1

2

3

4

5

6

7

8

9

10

C
ro

ss
 S

ec
tio

n 
/ m

ic
ro

 b

0 2 4 6 8 10
0

2

4

6

8

10

Cross Section
Fit to Cross Section
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T9 N2
A <4He2n>

DC Resonant
[3] [3] This Work

0.5 4.00× 10−11 3.04× 10−16 4.75× 10−16

0.8 8.00× 10−11 2.75× 10−15 2.60× 10−15

1.0 1.15× 10−10 8.18× 10−15 7.99× 10−15

1.5 2.20× 10−10 3.71× 10−14 4.64× 10−14

2.0 3.29× 10−10 7.06× 10−14 1.00× 10−13

2.5 4.25× 10−10 9.37× 10−14 1.42× 10−13

3.0 5.01× 10−10 1.05× 10−13 1.66× 10−13

5.0 6.49× 10−10 9.33× 10−14 1.60× 10−13

Table 4: Reaction rates for the successive capture of two neutrons on 4He, for
different temperatures, T9. Both the direct capture and resonant rates published
in [3] are tabulated here, as well as numbers produced in this work.

experimental data was used to provide the dineutron formation cross-section.

(See Appendix III for details.)

Figure (7) shows the experimental two-neutron cross-section[26], and the

dineutron cross-section output from the program TWOSTEP, which uses fits to

the experimental data to reproduce the cross-section curve. (See Appendix III

for details.)

The dineutron state is not a resonance, but it has been treated as such in this

calculation. It is in fact a ‘virtual’ state. The energy dependence of the width

T9 N2
A <4He2n>

DC Resonant

0.5 2.44× 10−8 3.68× 10−15

0.8 4.06× 10−8 4.79× 10−14

1.0 5.06× 10−8 1.88× 10−13

1.5 7.19× 10−8 1.11× 10−12

2.0 8.88× 10−8 2.24× 10−12

2.5 1.02× 10−7 3.00× 10−12

3.0 1.13× 10−7 3.32× 10−12

5.0 1.39× 10−7 2.75× 10−12

Table 5: Reaction rates for both direct capture (DC) and resonant dineutron
capture on 4He for different temperatures.
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Figure 9: The Resonant and direct capture rates for dineutron capture on 4He,
agianst temperature in GK. The sum of these two rates is also plotted, and is
labelled total.

of this virtual state is needed so that Equation (48) can be used to calculate the

reaction rate. The dineutron width was set as a constant, equal to the FWHM

of the experimental curve shown in Figure (7), which is 0.095 MeV.

There are two mechanisms by which the dineutron can be captured on 4He,

resonant capture (RC) and direct capture (DC). In RC the dineutron is captured

to form the 1.797 MeV Jπ =2+ resonance state, which can then γ-decay to the

ground state. In direct capture the reaction bypasses the resonance state and

is ‘directly’ captured into the ground state of 6He.

Figure (9) shows the RC rate, the DC rate and the total reaction rate,

which is given by the sum of the RC and DC rates. The total rate is entirely

dominated by the DC rate. Table (5) shows the values used to produce Figure

(9). It clearly shows that for 0.5 ≤ T9 ≤ 5.0, the RC rate is ∼ 5→ 7 orders of

magnitude smaller than the DC rate.
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COMPARISON BETWEEN SUCCESSIVE CAPTURE RATES AND

DINEUTRON CAPTURE RATES

Table (6) shows the total rates for both the successive capture of two neutrons

on 4He and dineutron capture. Although the resonant, successive capture rate is

37% larger than previous values, it is negligible in comparison with the DC rate,

which has in turn been shown to be negligible in comparison with the dineutron

capture rate. The dineutron capture rate is 2 to 3 orders of magnitude larger

than the successive rate.

3.4 CONCLUSION

The FORTRAN program used in [3] was updated and modified, so that it

could be used to calculate the successive neutron capture rate and the dineu-

tron capture rate on 4He. Improved numerical integration and an updated

B(E2, 2+ → 0+) yielded resonant successive neutron capture rates 37 % larger

than previous estimates. However, this improvement is negligible in comparison

with the dineutron capture rate which is 2 to 3 orders of magnitude larger.

T9 <σv>TOT
2n Capture n + n Capture

This Work [3]

0.5 2.44× 10−8 4.00× 10−11 4.00× 10−11

0.8 4.06× 10−8 8.00× 10−11 8.00× 10−11

1.0 5.06× 10−8 1.15× 10−10 1.15× 10−10

1.5 7.19× 10−8 2.20× 10−10 2.20× 10−10

2.0 8.88× 10−8 3.29× 10−10 3.29× 10−10

2.5 1.02× 10−7 4.25× 10−10 4.25× 10−10

3.0 1.12× 10−7 5.01× 10−10 5.01× 10−10

4.0 1.28× 10−7 6.49× 10−10 6.49× 10−10

5.0 1.39× 10−7 6.49× 10−10 6.49× 10−10

Table 6: The total reaction rates for both dineutron and successive neutron
capture, where the total rate is the sum of the direct capture and resonant
reaction rates. The reaction rates are given in cm3 mol−2 s−1. The temperature
is given in GK.
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4 THE REACTION RATE OF 6He(α,n)9Be
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Figure 10: The cross-section against centre-of-mass energy for the 6He(α,n)9Be
reaction. The cross-section was calculated from the revised 10Be level scheme
in [20].

A new evaluation of experimental data by TUNL resulted in a revised energy

level scheme for 10Be[20]. Using this revised level scheme, a new calculation of

the cross-section and rate of the 6He(α,n)9Be reaction was performed.

Figure (10) shows the cross-section calculated from the revised level scheme.

This cross-section is 5 orders of magnitude larger than the cross-section shown

in Figure (3) for a centre-of-mass energy, ECM , of 0.01 MeV. However between

1 ≤ ECM ≤ 10 MeV, there is little difference in the cross-section.

Figure (11) shows the reaction rate calculated for the revised energy level

scheme. In comparison with the previous reaction rate shown in Figure (4), the

rate is 3 orders of magnitude larger at ECM = 0.1. There is still a similar order

of magnitude difference at ECM=1 MeV, however at 10 MeV, the rates are very
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Figure 11: Reaction rate against temperature for the reaction 6He(α,n)9Be. The
revised level scheme of 10Be in [20] was used to calculate the reaction rate.

ER/MeV Jπ ΓTOT (ER) Γα(ER) Γn(ER) σ(ER)
(C2Sα) (C2Sα)

7.542 2+ 6.302×10−3 2.2×10−5 6.28×10−3 0.145 b
(17.0) (0.003)

9.560 2+ 1.410×10−1 2.30×10−2 1.18×10−1 0.348 b
(0.014) (0.017)

10.15 3− 2.960×10−1 2.86×10−1 1.00×10−2 91.28 mb
(0.286) (0.0024)

10.57 4+ 1.520×10−1 1.48×10−1 4.00×10−3 79.88 mb
(0.40) (0.003)

11.23 4+ 1.970×10−1 7.00×10−3 1.90×10−1 88.38 mb
(0.001) (0.1)

11.76 0+ 1.140×10−1 6.30×10−3 1.08×10−1 13.10 mb
(0.001) (0.01)

Table 7: Values used to calculate the cross-section and reaction rate using the

revised 10Be level scheme[20] for the reaction 6He(α,n)9Be. ER is the energy of
the resonance above the ground state in the compound nucleus 10Be. The Total
width, ΓTOT , and the partial widths, Γα and Γn, are all given in MeV. The
spectroscopic factors, C2Sα and C2Sα , are given in brackets below the partial
widths. The resonant cross-section σ(ER) is also given.
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similar.

The large difference between this rate and the rate previously calculated is

due to the spectroscopic factor of the entrance channel, C2Sα, for the 7.542 MeV

resonance. The value in Table (7) is 170 times larger than the value in Table

(2), as suggested by the recent evaluation of experimental data by Tilley et al.

in [20].

However since a fit to the previous rate had already been obtained, it was this

rate that was implemented in the r-process simulation. This revised reaction rate

calculation is merely included here for completeness. It should be investigated

further in future calculations.
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5 THE r-PROCESS

Figure 12: The low mass region of the reaction network used in the r-process
simulation. The 2 reactions considered here are shown in red. The inset is an
enlargement of the very low mass region.

The r-process is simulated in the neutrino driven wind of a type II super-

nova. This model of the r-process is derived from a ‘realistic’ hydrodynamic

simulation[7]. The model uses results from a numerical simulation of the neu-

trino driven wind from [27] to describe the expanding material.

A neutron star is formed by a type II supernova. The proto-neutron star

emits a high neutrino flux. Some of these neutrinos heat the outer surface of

the proto-neutron star. This causes outward movement of the surface material,

called a neutrino driven wind.

The r-process is simulated by a program called RPROC.EXE (see Appendix

I for more details). The simulation contains reaction rates for nuclei up to

A∼250. The low mass region of the network used in the simulation is shown in

Figure (12). The two reactions considered here, 4He(2n,γ)6He and 6He(α,n)9Be,

are shown in red in Figure (12).
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5.1 THE r-PROCESS SIMULATION AND THEORY

This simulation of the r-process uses an exponential decay model for the tem-

perature of the form

T9 = T9i exp

(

−t

ts

)

+ 0.6. (50)

Here T9i is the initial temperature in Giga Kelvin (GK) and was set to 9.0 GK,

t is the time in seconds, and ts is the timescale for the temperature decrease

and was equal to 0.05s in these simulations.

The reaction rates were calculated per mole, so when the rates are imple-

mented in the code they are multiplied by the particle density, ρ, which is

temperature dependent, with

ρ = 3.33× 105

(

T 3
9

sk

)

g cm−3. (51)

Here sk is the entropy per baryon, where

sk =
s

k
, (52)

s is the entropy, and k is Boltzmann’s constant. The entropy per baryon is

usually set to a value in the range 50 ≤ sk ≤ 400[22]. In these simulations an

intermediate value of 150 was used.

5.2 INVERSE REACTION RATES

Before the reaction rates for the two reactions 4He(2n,γ)6He and 6He(α,n)9Be

could be implemented in the code, reaction rates for the inverse reactions,

6He(γ,2n)4He and 9Be(n,α)6He, must also be calculated.

THE INVERSE REACTION RATE OF 6He(α,n)9Be

For a nuclear reaction, 1 + 2 → C → 3 + 4, where the particles in the entrance

channel (particles 1 and 2) form a resonant state in the compound nucleus C,
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which then breaks up into particles 3 and 4, the cross-section can be given by

σ1,2 = πλ̄2
1,2

2J + 1

(2J1 + 1)(2J2 + 1)
× | < 3 + 4|HII |C >< C|HI |1 + 2 > |2. (53)

The cross-section for the inverse reaction is

σ3,4 = πλ̄2
3,4

2J + 1

(2J3 + 1)(2J4 + 1)
× | < 1 + 2|HI |C >< C|HII |3 + 4 > |2. (54)

HI is the operator describing the entrance channel interaction and HII is the

operator describing the interaction in the exit channel2. From the principle of

time-reversal invariance, the matrix elements of the entrance and exit channels

must be identical, therefore

| < 3+4|HII |C >< C|HI |1+2 > |2 = | < 1+2|HI |C >< C|HII |3+4 > |2. (55)

Therefore the cross-section ratio of the normal and time-reversed processes is

given by

σ1,2

σ3,4
=

λ̄2
1,2(2J3 + 1)(2J4 + 1)

λ̄2
3,4(2J1 + 1)(2J2 + 1)

, (56)

=
µ3,4E3,4(2J3 + 1)(2J4 + 1)

µ1,2E1,2(2J1 + 1)(2J2 + 1)
. (57)

The equivalent quantity h̄2

(2µE) has been substituted in for λ̄2, where µ is the

reduced mass and E is the centre-of-mass energy.

Using Equation (36) to write expressions for the reaction rates for both the

forward and inverse reactions, the ratio of the reaction rates is given by

2Usually a factor of (1+δ1,2) is included in the cross-section expression to take into account
the doubling of the cross-section for identical particles in the entrance channel. However since
neither of the 2 reactions looked at here have identical particles in the entrance channel, the
factor has been omitted for the sake of clarity.
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< σv >3,4

< σv >1,2
=

(2J1 + 1)(2J2 + 1)

(2J3 + 1)(2J4 + 1)

(

µ1,2

µ3,4

)
3

2

exp

(

−
Q

kT

)

, (58)

where Equation (25) and the relation E3,4 = E1,2 + Q (Q>0) have been used.

Therefore the inverse reaction rate of 6He(α,n)9Be is given by

< σV >n,9Be=< σV >α,6He

(

1

8

)(

24

9

)
3

2

exp

(

−11.605× 0.6

T9

)

. (59)

THE INVERSE REACTION RATE OF 4He(2n,γ)6He

The reaction rate for the inverse reaction of 4He(2n,γ)6He cannot be calculated

from Equation (59) since it is a photodisintegration reaction. In a nuclear

reaction where 1 + 2 → C → 3 + γ, the following expression must be used[1]

< σv >3,γ

< σv >1,2
=

(

169

8π5

)
1

2 (2J1 + 1)(2J2 + 1)

3J3

(

µ c2

kT

)
3

2

exp

(

−Q

kT

)

. (60)

The reaction rate for a photodisintegration reaction should not be multiplied

by the particle density, instead it should be multiplied by the photon density,

Nγ . The energy distribution of the photons is described by Planck’s radiation

law, which gives

Nγ =
8π4

13c3h3
(kT )3. (61)

Therefore the reaction rate multiplied by the photon density is given by

Nγ < σv >3,γ=< σv >1,2 ×

(

2πh̄2

µkT

)

−3

2 (2J1 + 1)(2J2 + 1)

2J3 + 1
× exp

(

−Q

kT

)

.

(62)

This gives
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Nγ < σV >6He,γ=< σv >4He,2n ×1.08× 1020×T 3
9 × 3× exp

(

−11.269

T9

)

(63)

for the 6He(γ,2n)4He reaction.

5.3 THE β-DECAY OF 6He

6He is radioactive, and it decays by beta emission,

6He → 6Li + e− + ν̄. (64)

So that 6He is fully included in r-process simulations, its β-decay must be

included. The decay constant, λ, is the probability of an atom decaying, per

unit time. It is related to the half life, t1/2 of the nucleus by the relation

λ =
ln 2

t1/2
. (65)

6He has a half-life of 0.8067 s[4].

5.4 THE REACTION RATE OF 4He(αn,γ)9Be

The reaction rate used in the r-process simulation for the reaction 4He(αn,γ)9Be

was found to be the rate calculated in [19] and has become outdated. A more

recent calculation in [3] was used, which found that the reaction rate was a

factor of 2 smaller than the rate in [19]. Therefore the code was altered to

reflect this and the reaction rate is now

< σv >4He,αn=
1

2
×

2.59× 10−6

T 2
9 (1 + 0.344T9)

× exp

(

−1.062

T9

)

. (66)

5.5 RESULTS AND DISCUSSIONS

Three different r-process simulations were run, one did not include 6He, the other

two included the 6He(α,n)9Be reaction, one of which included the reaction rate
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Figure 13: 6He production in r-process simulations against time.

for 4He(2n,γ)6He calculated in [3], and the other included the rate calculated

here.

6He PRODUCTION

Figure (13) clearly shows that more 6He is produced in the r-process simula-

tion which included the rate for the reaction 4He(2n,γ)6He calculated in this

work. However, Figure (14) shows that at T9=4, the 6He abundance drops

below the 6He abundance curve obtained when the simulation was run for the

previous estimate of the reaction rate. This coincides with the temperature at

which the reaction rate for 6He(α,n)9Be becomes dominant over the rate of the

12C(n,α)9Be reaction. This is shown in Figure (16), where the reaction rates

multiplied by the density, ρ, have been plotted for reactions which produce 9Be.

The reaction rates have been multiplied by ρ, since the rates in the r-process

simulation are multiplied by ρ. This is therefore more indicative of which re-

actions are dominant in the simulation. The reverse rate for a reaction is also

plotted and is shown by a dashed line of the same colour as for the forward
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Figure 14: 6He production in r-process simulations against temperature, T9.

reaction.

The drop in 6He abundance at T9=4 indicates that the increased 4He(2n,γ)6He

rate causes the 6He abundance to be sufficiently large that there is now a flow

though the 6He(α,n)9Be reaction towards higher masses.

9Be PRODUCTION

Figure (17) shows a similar drop in abundance for 9Be, at T9=4, in the r-

process simulation which includes the 4He(2n,γ)6He rate calculated here. All

three curves plotted in Figure (17) exhibit an increase in abundance between 2 ≤

T9 ≤3. The 9Be adundance calculated using the 4He(2n,γ)6He rate calculated

here, is consistantly lower than the other 2 curves. This is probably due to

the reduced neutron abundance caused by the 4He(2n,γ)6He reaction. Figure

(18) shows the neutron abundance against temperature for the three different r-

process simulations. The simulation which includes the increased 4He(2n,γ)6He

rate, shows a significant reduction in neutron abundance between 0.5 ≤ T9 ≤

3. This means there are less neutrons available for the 4He(αn,γ)9Be reaction,

39



0.51510
T9

1×10
-10

1×10
-8

1×10
-6

1×10
-4

1×10
-2

1×10
0

1×10
2

1×10
4

1×10
6

1×10
8

1×10
10

1×10
12

1×10
14

1×10
16

re
ac

tio
n 

ra
te

 x
 d

en
si

ty

4He(2n,g)6He rate from this work
4He(2n,g)6He rate from [3]
9Be(n,a)6He

Figure 15: The rates of reactions, in the r-process simulation, which produce
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rates are also plotted. The inverse rate is indicated by a dashed line of the same
colour as for the forward reaction.
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Figure 17: 9Be production in r-process simulations against temperature, T9.

consequently less 9Be is produced.

12C PRODUCTION

Figure (19) shows the variation in 12C abundance with temperature, during the

three r-process simulations. The simulation including the increased 4He(2n,γ)6He

rate shows a decrease in abundance after T9=4 in comparison with the abun-

dance obtained without this reaction. This decrease in adundance is due to the

reduced 9Be abundance, since there is less 9Be available for the 9Be(α,n)12C

reaction. However there is an increase in abundance for T9 ≥ 1.5. This is most

likely due to the reduced neutron abundance causing the 9Be(n,α)6He reaction

to also be reduced.

FINAL ABUNDANCES

Figure (20) shows the final elemental abundances produced in the 3 differ-

ent r-process simulations. The curves plotted for the simulation using the

4He(2n,γ)6He rate from [3] and without a 4He(2n,γ)6He rate are identical. The
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Figure 20: The final elemental abundance curve produced by the r-process
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4He(2n,γ)6He rate included, one with the old 4He(2n,γ)6He rate calculated in
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Figure 22: Final abundances against mass number A, normalised to the 56Fe
adundance.

curve for the simulation which includes the 4He(2n,γ)6He rate calculated in this

work is significantly different from the other two curves. There is a much larger

12C abundance. Nuclei with mass numbers A ≥ 85, have generally increased

abundances, indicating an increased flow towards heavier nuclei.

Figure (21) shows the abundance curves for the simulation using the

4He(2n,γ)6He rate from [3] and the 4He(2n,γ)6He rate calculated here, nor-

malised to 12C abundance. This shows that, compared with the 12C abundance,

there is less of a flow towards heavy nuclei. Figure (22) shows these same two

curves normalised to the 56Fe abundance. 56Fe was chosen since this is the

last nuclide for which fusion reactions are exothermic, and it is the most stable

nucleus, having the highest binding energy per nucleon. The curve plotted for

the simulation which included the 4He(2n,γ)6He rate calculated here, shows a

consistantly higher abundance for nucei A ≥ 56.

The r-process exhibits characteristic peaks at A=80, A=130 and A=195,

due to neutron-magic-numbered nuclei stalling the flow toward heavier nuclei.
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Figure 23: Final abundances against mass number, A, normalised to the r-
process abundance peak at A=80.

These simulations of the r-process terminate before A=130 and A=195, due

to lack of neutrons, however an increase in abundance around A=80 would be

expected. Figure (23), which shows the elemental abundance normalised to

the A=80 abundance, was plotted to investigate this. The curve, plotted for

the simulation which included the increased 4He(2n,γ)6He rate, shows a similar

abundance to that for nuclei A ≥ 80, there is no peak visible. The curve,

plotted for the simulation with the smaller 4He(2n,γ)6He rate, does exhibit a

peak, but it is not pronounced. The un-normalised curves displayed in Figure

(20) do show a slight increase in abudance around A=80, however none of the

simulations sucessfully replicate the r-process peak at A=80.

Figure (24) shows the percentage of nuclei with mass greater than A. In the

mass region 75 ≤ A ≤ 110, the simulation with the increased 4He(2n,γ)6He rate,

clearly has a greater percentage of nuclei with these higher masses. Between 110

≤ A ≤ 134 both curves show similar percentages of the heaviest nuclei produced

in the simulation. The simulation ran with the 4He(2n,γ)6He rate from [3] has
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Figure 24: Percentage of nuclei with mass greater than A against A.

50% of nuclei with mass greater than A=83, whereas the simulation with the

increased 4He(2n,γ)6He rate, has 50% of it’s nuclei with mass great than A=95.

This clearly shows that the inclusion of the increased 4He(2n,γ)6He rate in the r-

process simulation resulted in an increased flow towards higher masses. However

the simulations all terminate at A∼134, so the increased 4He(2n,γ)6He rate did

not increase the mass number at which the r-process simulation terminates.

Figure (25) shows the elemental abundance in the region 63 ≤ A ≤ 134.

The curves have been normalised such that the total number of nuclei in the

region is equal to 1. Figure (25) also shows the r-process abundances from

[21], which have been normalised in this same manner. There does not seem

to be any correlation between the solar system r-process abundances from [21]

and the r-process simulation abundances. In fact both simulation curves have

a negative correlation coefficient of ∼ -0.2 when compared to the solar system

r-abundances. This is most likely due to the termination of the simulations at

A=134 due to lack of neutrons. Should the simulations be repeated for different

environmental conditions such as a shorter timescale, ts, or higher entropy, sk,
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Figure 25: Fractional abundance of nuclei in the region 63 ≤ A ≤ 134 against
A.

a better fit to the solar system abundances might be obtained.

COMPARISON WITH OTHER R-PROCESS SIMULATIONS

Figure (26) is the final elemental r-process abundance curve published in [7].

This figure was produced using the same r-process simulation that was used in

this work. The r-process abundances in Figure (26) provide a better fit to the

solar system r-abundances in comparison with the simulations performed for

this work. Figure (27) is also from [7]. It shows three different r-process final

abundance curves produced for three different timescales, ts. Plots (b) and (c)

in Figure (27) both terminate at A ∼ 135, like the simulations performed here,

however (a) runs sucessfully up to A ∼ 250. The timescale for this simulation

is a factor of 10 smaller than the timescale used in this work. The simulation

with the shortest timescale, and therefore the fastest neutrino-driven wind, is

successful at producing elements up to A ∼ 250 since the timescale for expansion

is shorter than the neutrino-nucleon collision timescale[7], tν . When ts < tν the
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Figure 26: The final r-process abundance curve published in [7]. This curve was
produced using the same r-process simulation as used in this work. The black
squares indicate the solar r-process abundances from [21]. In [7] the simulation
was run for the full reaction network, and a smaller α-network. The solid line
indicates the results from the full network. The simulations run for this work
were for the full reaction network.

r-process is not hindered by neutrino interaction processes, such as

νe + n → p + e−, (67)

which reduces the number of neutrons available for the r-process.

Therefore the r-process simulation should be run for a shorter timescale to in-

vestigate whether the inclusion of the 4He(2n,γ)6He and 6He(α,n)9Be reactions

produces a better fit to the solar system r-process abundances, and increases

the mass number at which the simulation terminates.

5.6 CONCLUSION

The inclusion of the enhanced 4He(2n,γ)6He reaction rate resulted in an in-

creased abundance of 6He, enabling the 6He(α,n)9Be reaction to provide a flow

towards heavier nuclei. This initially results in an increased 9Be abundance.
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Figure 27: Three final elemental abundance curves from [7]. The simulation
was run for three different timescales, ts = (a) 5.1 ms, (b) 53 ms, and (c) 100
ms. The solid line represents the abundances obtained from the full reaction
network that was also used in the simulations performed for this work.
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However the 4He(2n,γ)6He reaction burns neutrons and causes a decrease in

the neutron abundance, thus reducing the number of neutrons available for the

4He(αn,γ)9Be reaction and resulting in a decreased 9Be abundance. This af-

fects the 9Be(α,n)12C reaction, causing an initial decrease in 12C abundance.

However there is an increase in 12C abundance when T9 ≤ 1.5, probably due to

the decreased neutron abundance reducing the 9Be(n,α)6He rate.

The inclusion of an increased 4He(2n,γ)6He rate also significantly affects

the calculated, final elemental abundances. There is an increase in heavier

elements. 50% of the nuclei produced by the simulation with the increased

4He(2n,γ)6He rate have a mass, A ≥ 95, as opposed to A ≥ 83 for the other

2 simulations which contained either no 4He(2n,γ)6He rate, or included the

reduced rate found previously in [3]. It was also found that the inclusion of

an increased 4He(2n,γ)6He rate did not reproduce the characteristic r-process

peaks, nor reproduce the solar system r-process elemental abundances. However,

should the simulation be run for a timescale shorter than the neutrino-nucleon

collision timescale, the situation could be vastly improved.

50



6 FUTURE WORK

The interference in the cross-section in the 6He(α,n)9Be was found to have a

negligable affect on the reaction rate. However, the estimate of the interference

term in the cross-section was calculated rather primatively. A better estimate

of the interference would be obtained by using r-matrix theory to calculate the

interference.

The r-process simulations did not run up to very heavy elements. The effect

of running the simulations for different environmental conditions, such as higher

entropy and a reduced timescale, should be investigated.
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7 CONCLUSION

It was hypothesised that the reactions 4He(2n,γ)6He and 6He(α,n)9Be could be

very important in simulations of the r-process, in the shock fronts of supernovae.

In this model the seed abundance is reassembled from the free α’s and nucleons

in statistical equilibrium, however this process is hindered by the lack of stable

nuclei with mass numbers of 5 and 8. The combination of the 4He(2n,γ)6He

reaction with the 6He(α,n)9Be reaction bridges these mass gaps.

The reaction rate for the 6He(α,n)9Be reaction was calculated in a program.

An updated energy level scheme for 10Be was used. The temperature depen-

dence of the reaction rate was determined and an exponential function was fitted

to the rate.

Two mechanisms by which the 4He(2n,γ)6He reaction can occur are dis-

cussed; succesive neutron capture and dineutron capture. Previous estimates of

successive neutron capture were found to be insufficient to provide a substantial

flow towards heavy nuclei in r-process simulations. An existing program was

modified to improve integration accuracy and to reduce run time. Also, more

recent input values were entered. It was found that the new resonant successive

capture reaction rate estimates were on average 37% larger than the previous

ones, but were still the same order of magnitude. The successive neutron direct

capture rate was unchanged.

This same program was then adapted to calculate the dineutron capture rate.

Both resonant capture and direct capture were investigated. It was found that

the dineutron reaction rate was dominated by the direct capture mechanism.

The total dineutron reaction rate was was ∼ 2 → 3 orders of magnitude larger

than the successive capture rate.

The two reactions 4He(2n,γ)6He and 6He(α,n)9Be were added into an r-

process simulation. Three simulation were run. One used the reaction rates cal-

culated in this work, another used a previous (smaller) estimate of the 4He(2n,γ)6He

rate, and a third did not contain a 4He(2n,γ)6He rate. It was found that the
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larger 4He(2n,γ)6He rate produced significantly more 6He, and caused a de-

crease in neutron abundance. This had an knock-on effect of reducing the 9Be

abundance, as there were fewer neutrons for the 4He(αn,γ)9Be reaction. This in

turn caused an initial decrease in 12C abundance. However the decrease in neu-

tron abundance caused a decrease in the 9Be(n,α)6He rate, causing an enhanced

12C abundance for T9 ≤ 1.5.

The inclusion of these 2 reactions also resulted in an increased flow towards

heavier nuclei. 50% of the nuclei produced in the simulation with the increased

4He(2n,γ)6He rate had a mass ≥ 95. This compares with 50% of the nuclei in

the other 2 simulations having A ≥ 83. However the increased 4He(2n,γ)6He

rate did not cause a better reproduction of the r-process characteristic peaks,

nor did it better replicate the r-process solar abundances. This situation would

most likely be improved by running the simulations for higher entropy and a

timescale less than the neutrino-nucleon collision timescale.
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8 APPENDIX I: PROGRAM INDEX

8.1 RATE

RATE is an almost entirely new FORTRAN77 program, written to calculate

the 6He(α,n)9Be rate. It contains the following files:

• rate1.f

• func.f

• func2.f

• func3.f

• pene2.f

• coull.f

This program also requires the libraries libmathlib.a and libkernlib.a from the

CERN library, so that the subprogram DGAUSS can be used to perform the

integration.

The main program is contained in the file rate1.f, this is where all the input

is read into the program. The file func.f contains the function func, which is the

function integrated by DGAUSS. In this function the cross-section for the reac-

tion is calculated. The files func2.f and func3.f contain the functions func2 and

func3 which calculate the cross-section with the addition of interference terms

and subtraction of interference terms respectively. The program automatically

looks through the input data for each of the resonances in the compound nu-

cleus, to find which levels have the same spin. No parity data for the resonances

is input, the program assumes that energy levels with the same spin have the

same parity.

8.2 TWOSTEP

The program TWOSTEP was originally used in [3] to calculate the successive

capture of 2 neutrons on 4He. This version of TWOSTEP and all the variations

of this program are FORTRAN77 programs. I modified this program so that

the integration was performed by an external subprogram from the cern library

called DGAUSS. DGAUSS uses adaptive Gaussian quadrature to calculate the
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double integral in Equation (48). This equation is of the form

I =

∫

x1

f(x1)

[
∫

x2

f(x1, x2)dx2

]

dx1. (68)

The TWOSTEP program previously used a version of the trapezium rule to

calculate the integrals. This program consists of the following files:

• twostep2.f

• total2.f

• all2.f

• rate4.f

• sub2.f

• rate1.f

• coull.f

• bshift.f

and requires the libraries libmathlib.a and libkernlib.a from the CERN library

so that the subprogram DGAUSS can be called.

The main body of the program is contained in twostep2.f. The files coull.f

and bshift.f calculate penetrabilities and transmission values so that the inte-

grands in Equation (48) can be calculated. The file rate1.f is f(x1, x2) in Equa-

tion (68), sub2.f calls rate1.f, and rate4.f integrates the function sub contained

in sub2.f. These three files calculate the section of Equation (68) contained

in the square brackets. Also in rate4.f, the bracketed integral is multiplied by

f(x1). This subroutine is called by the function all in all2.f. The function all is

then integrated by the subroutine total, contained in the file total2.f. The main

program calls the total subroutine and then reads the temperature and reaction

rate out to the screen and to an output file called twostep.dat.

TWOSTEP INPUT DATA

The first step in the reaction 4He(2n,γ)6He is the the first neutron capture on

4He to form the unbound 5He. The program asks that the charges, Z, and the

mass numbers, A, of the target and projectile nuclei be entered. The neutron

is the projectile, therefore AP=1 and ZP=0. The target nucleus is 4He, where

AT=4 and ZT=2. The program then asks for the resonance energy, which in

55



this case is 0.9 MeV and the relative angular momentum between the target

and projectile. A spectroscopic factor of 0.51 is entered. Then the spins of the

resonance, 3
2 , the target, 0, and the projectile, 1

2 , are input.

In the second step of the reaction, the capture of a second neutron onto 5He,

the neutron is the projectile and the 5He is the target nucleus. Therefore AP=1,

ZP=0, AT=5 and ZT=2. A resonant state in 6He is formed, which can decay

either by γ-decay or 2-neutron emission. The energy of the resonance in 6He

is 1.797 MeV above the ground state. The 2 neutron separation energy, s2n, is

0.973 MeV. The energy of the emitted γ-photon is 1.797 MeV, and the γ-decay

width is 9.88×10−12 MeV. The multipolarity of the decay-transition is 2, and

the photon carries away 1 unit of angular momentum. A spectroscopic factor of

0.5 is then input. The 2-neutron decay width is then asked for, which is 0.113

MeV. The charge on the emitted dineutron is 0. The spin of the resonance is 2,

the target is 3
2 and the projectile is 1

2 . The the spin of an emitted dineutron is

0.

8.3 TWOSTEP2

The program TWOSTEP2 is a variation on TWOSTEP. I modified the code

so that the dineutron capture rate on 4He could be calculated. The dineutron

formation cross section was added into the code by finding a functional fit to

the experimental cross-section. (See Appendix III.) The program TWOSTEP2

consists of the following two CERN libraries; libmathlib.a and libkernlib.a as

well as:

• 2ntwostep2.f

• 2ntotal2.f

• all2.f

• 2nrate4.f

• 2nsub2.f

• 2nrate1.f

• coull.f

• bshift.f

These files and the functions and subroutines contained there in, perform the
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same tasks as their namesakes in the TWOSTEP program (see section above).

The output is written to the screen and to a file called twostep2.dat.

TWOSTEP2 INPUT DATA

The first step in the reaction 4He(2n,γ)6He, is the formation of the dineutron.

The program asks for the mass number, A, and charge, Z, of the projectile and

target nuclei. In this case the projectile and target nuclei are the same with

AT=AP=1, and ZT=ZP=0. The program then asks for the resonance energy,

since the dineutron cross-section is being treated as a resonance at zero energy,

the resonance energy is zero. The program asks for the change in angular

momentum, L, of the reaction, which is also zero. A spectroscopic factor of

zero is then entered, followed by the spin of the resonance, which is zero. The

program then asks for the spins of the projectile and target nuclei, in this

case JT=JP=0.5. Then limits and a required accuracy are requested for the

integration of the first step, in this case the limits ran from 0 to 25, and an

accuracy of 1 × 10−30 was used.

The second step in the reaction is the dineutron capture on 4He. This time,

AT=4, ZT=2, AP=2, ZP=0 is entered. The resonance energy of the resonant

state in 6He, 1.797 MeV, is entered. The 2 neutron separation energy is entered,

0.973 MeV. The energy of the emitted γ-photon is entered, and the γ-width and

the multipolarity of the transition is asked for. The γ-energy is equal to the

energy of the resonance, 1.797 MeV. The width=9.88 µeV, and the multipolarity

is equal to 2. The spin of the resonance, 2, is entered, followed by the spins of the

target and projectile nuclei, which is zero for both. The two neutron resonance

width is aked for, and is equal to 0.113 MeV. The angular momentum change

of the reaction is 2. The same integration limits, and accuracy, were used for

the second step as were used for the first.
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8.4 TWOSTEPDC

This version of the program TWOSTEP calculates the reaction rate for dineu-

tron direct capture on 4He. The direct capture cross-section was calculated in

a program called JEZEBEL, and a functional fit was found (See Appendix III),

and this was added into the program. TWOSTEPDC contains the following

files:

• 2ndctwostep2.f

• 2ntotal2.f

• dcall2.f

• 2nrate4.f

• 2ndcsub6.f

• 2nrate1.f

• coull.f

• bshift.f

These files perform the same tasks as their namesakes in the original TWOSTEP

program. This program also requires the libraries libmathlib.a and libkernlib.a

from the CERN library.

TWOSTEPDC INPUT PARAMETERS

As in TWOSTEP2, the first step in the reaction 4He(2n,γ)6He, is the formation

of the dineutron. Consequently all the input parameters are the same as those

described for TWOSTEP2, apart from the integration limits and accuracy. The

limits used were 0 to 1 MeV and an accuracy of 1×10−6.

The second stage, the direct capture of the dineutron on 4He, also requires

the same input parameters as TWOSTEP2. The same values as described for

the TWOSTEP2 program were used except the limits and the accuracy. The

same limits and accuracy were used in this step as were used in the first step of

the TWOSTEPDC program.

8.5 JEZEBEL

JEZEBEL is the program used to calculate the direct capture cross-section for

the 4He(2n,γ)6He reaction. The direct capture cross section was also calculated
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by Mengoni, as in [25], and the JEZEBEL cross-section was scaled down to

match the Mengoni cross-section.

JEZEBEL calculates the direct capture cross-section using a Woods-Saxon

potential. There are no analytical solutions for the Woods-Saxon potential like

there are for a square-well. Consequently, numerical integration is performed to

obtain the wave function. The wave function must be zero at the centre of the

well, R=0. Therefore JEZEBEL adjusts the well-depth until the wave function

vanishes at R=0. This is the solution when the principal quantum number of

the final state is 1. If the principal qunatum number of the final state is > 1,

the well depth must be increased further until a wave function is found with a

number of zero crossings numerically equal to the principal quantum number of

the final state.

JEZEBEL INPUT

JEZEBEL requires the mass and charge of the target and projectile nuclei to

calculate the direct capture cross-section. In the case of dineutron capture on

4He, the dineutron is the projectile, MP=2 and ZP=0, and 4He is the target

nucleus, AT=4 and ZT=2. The Q-value of the reaction is also required, which in

this case: Q-value=0.9 MeV. The spins of the target and projectile nuclei, as well

as the spin of the final state, is necessary input. Both the projectile and target,

the dineutron and 4He respectively, are spin zero particles, and the spin of the

final state, the ground state of 6He, is also zero. The angular momentum carried

away by the emitted γ-decay photon is also input. JEZEBEL also requires that

the radius and diffuseness of the potential well be entered.

JEZEBEL requires some input relating to how it calculates the wave function

in the potential well. Firstly it requires that a guess value for the well depth

is entered, in this work a guess of 2 MeV was used. JEZEBEL also requires

a number of mesh points and a mesh size in femto-metres to be entered. The

mesh point number and mesh size determines where and how often the numerical

integration is performed to obtain the wave function. In this work 200 mesh
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points were used, with a spacing of 0.5 fm. This means that the numerical

integration was performed at 100 fm and then every 0.5 fm until the centre of

the well is reached. For the 4He(2n,γ)6He reaction, JEZEBEL calculated an

optimal well depth of 13.078 MeV.

JEZEBEL OUTPUT

JEZEBEL reads out all the input values used in the calculation, and the calcu-

lated direct capture cross-section to an external file. The user is asked to give

a name for the file, and it is created in the same directory as the program.

8.6 RPROC.EXE

rproc.exe is the program used to simulate the r-process, it is sometimes referred

to as rpcode. This program is written in FORTRAN90. Figure (28) shows all

the files, subroutines and functions contained in the program. The exponen-

tial temperature decay of the simulations (Equation (50)) is written into the

subroutine called therm. The density dependence of the simulations (Equation

(51)) is also written into this subroutine.

All the reactions considered in this work are low mass and are therefore

contained in the file spcompt4.full.f. The only other code altered for this work

was the file rebetar3.f, to include the β-decay of 6He, and the main program

remain5.f was altered so that that reaction rate coefficients for the reaction

6He(α,n)9Be could be read into the program, and so that the abundance of 6He

was read out into data files.

INPUT

The program requires to be in a directory called code, and that there are 2 folders

in the same directory as code, one called NACRE, the other called grantdat.

Both these folders contain input files for RPROC.EXE. The grantdat directory

contains the following files:
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Figure 28: A diagram mapping the different subroutines and functions of the
program rproc.exe, also known as rpcode.
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• an.rate

• init

• klap.dat

• na.rate

• noemit

• sigmav2

• table

The file an.rate contains data relating to (α,n) reactions on different nuclei.

The file contains 13 columns, columns 2 to 4 contain the number of protons, neu-

trons and nucleons in the nucleus of the target nucleus, and the last 7 columns

contain coefficients that describe the reaction rate. The coefficients, a1 through

to a7, go into a standard equation of the form

<σv>fit= exp

(

a1 +
a2

x
+ a3x−

1

3 + a4x
1

3 + a5x + a6x
5

3 + a7 log(x)

)

. (69)

The file na.rate contains the same data as na.rate except for (n,α) reactions.

The folder NACRE contains reaction rate data obtained from the Nuclear

Astrophysics Compilation of REaction rates. There is a file for each reaction

for which NACRE data was used, these files (and their reactions) are:

• 16Can19O

• 17Can20O

• 17Cng18C

• 17Nan20F

• 18Can21O

• 18Cng19C

• 18Nan21F

• 19Can22O

• 19Cng20C

• 19Nan22F

• 19Nng20N

• 20Can23O

• 20Nng21N

• 20Oan23Ne

• 21Nng22N

• 21Oan24Ne

• 22Fan25Na

• 22Nng23N

• 22Oan25Ne

• 22Ong23O

• 23Fan26Na

• 23Oan26Ne

• 23Ong24O

• 24Fan27Na

• 24Fng25F

• 24Oan27Ne
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• 25Fan28Na

• 25Fng26F

• 26Fan29Na

• 26Fng27F

• 27Fan30Na

An alteration to the program to include the reaction rate for the 6He(α,n)9Be

reaction means an additional input file containing reaction rate coefficients is

needed. This file is called fit2.dat, and should be in the same directory as the

program.

OUTPUT

The program requires that a directory called test be in the same directory as the

program. The program reads data out to various files it creates in that folder.

The program creates the following output files:

• final1

• atime1

• aout1

• ztime1

• small1

• burnt1

• netwout1

• carbon12.dat

The file final1 contains the final elemental abundances and contains 4 columns

of data:

• 1: Nuclear charge, Z.

• 2: Mass number, A.

• 3: Elemental Abundance.

• 4: Elemental Abundance multi-

plied by A.

The output file carbon12.dat contains the abundances of light nuclei, the file

contains 9 colums:

• 1: Time in seconds.

• 2: Temperature in Giga Kelvin.

• 3: Neutron abundance.

• 4: 3He abundance.

• 5: 4He abundance.

• 6: 6He abundance.
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• 7: 6Li abundance.

• 8: 9Be abundance.

• 9: 12C abundance.

The program also reads out data into files in the same directory as itself,

these files have the prefixs time, fort and fij. There is also an output file called

lightn.dat. It contains most of the same data as carbon12.dat.
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9 APPENDIX II: RATE CODE

The program rate, which was used to calculate the 6He(α,n)9Be rate, was mostly

written by myself, so the code for this program is included here: (Excluding the

subroutine coull and the function pene2, since these were not written by myself.)

9.1 THE MAIN PROGRAM

C—–Modified Amy Bartlett 11/12/2003 —–
implicit real*8 (a-h,o-z)
common /MandZ/at1,zt1,ap1,zp1,r1,at2,zt2,ap2,zp2,Temp,amu
common /energy/Er(10),EaR(10),EnR(10),Gammar(10),TnR(10),TaR(10)
common /width/C2Sn(10),C2Sa(10),Gamman(10),Gammaa(10),sigmar(10)
common /crosssection/ csec(10)
common /integer/n
common/angmon/ Ln(10),L(10),La(10)
common/flag/k,k2
common/interference/ m(10,10,10)
common/identifier/ number(10)
character*10 name
external func, func2, func3

write(6,*)’Hello! I calculate reaction rates.’
write(6,*)’What is your name?’
read(5,*)name
write(6,*)’Hello ’,name

open(11, FILE=’matrix.out’)
open(10, FILE=’func.out’)
open(12, FILE=’rate.out’)
open(13, File=’sigma.out’)
open(16, File=’sigma2.out’)
open(14, FILE=’matrix2.out’)
open(15, FILE=’ones.out’)
open(17, FILE=’delta1.out’)
open(18, FILE=’delta2.out’)
open(19, FILE=’mmm.out’)
open(20, FILE=’m1.out’)
open(21, FILE=’m2.out’)
open(22, FILE=’m3.out’)
open(23, FILE=’m4.out’)
open(24, FILE=’m5.out’)
open(25, FILE=’delta3.out’)
open(26, FILE=’delta4.out’)

write(6,*)’Are you ready to calculate some reaction rates?’
write(6,*)’y=1, n=0’
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read(5,*)s
IF (s.EQ.0) GOTO 200

a=0
b=10
eps=1.0
hbar=6.5822D-16
eamu=931.502
sol=2.998*(10.0**8.0)
k=0

write(6,*)’Please enter the following information about’
write(6,*)’the entrance channel:’
write(6,*)’ ’
write(6,*)’Mass of target nucleus (A):’
read(5,*)at1
write(6,*)’Charge on taget nucleus (Z):’
read(5,*)zt1
write(6,*)’Mass of projectile (A):’
read(5,*)ap1
write(6,*)’Charge on projectile (Z):’
read(5,*)zp1
write(6,*)’ ’

r1=1.3
amu=(at1*ap1)/(at1+ap1)
pi=3.141592654
AvNo=6.02217D19
bk=8.6117D-05
bkMeV=8.6171D-11

write(6,*)’Please enter the following information about’
write(6,*)’the exit channel:’
write(6,*)’ ’
write(6,*)’Mass of target nucleus (A):’
read(5,*)at2
write(6,*)’Charge on target nucleus (Z):’
read(5,*)zt2
write(6,*)’Mass of projectile:’
read(5,*)ap2
write(6,*)’Charge on projectile (Z):’
read(5,*)zp2

write(6,*)’ ’
write(6,*)’How many energy levels does the intermediate’
write(6,*)’nucleus have?’
read(5,*)n

DO i=1,n
write(6,*)’Please enter the following information about’
write(6,*)’energy level number ’,i,’:’
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write(6,*)’ ’
write(11,*)’values for energy level number’,i,’:’
number(i)=i
write(6,*)’Energy in MeV above ground state:’
read(5,*)ER(i)
write(11,*)’Energy of resonance: ’,ER(i)
EaR(i)=ER(i)-7.4104
write(11,*)’Alpha energy: ’,EaR(i)
EnR(i)=ER(i)-6.8120
write(11,*)’Neutron Energy: ’,EnR(i)
write(6,*)’J:’
read(5,*)L(i)
write(11,*)’J of state: ’,L(i)
write(6,*)’L entrance channel:’
read(5,*)La(i)
write(11,*)’Ang Mom change, entrance channel: ’,La(i)
write(6,*)’L exit channel:’
read(5,*)Ln(i)
write(11,*)’Ang Mom change, exit channel: ’,Ln(i)
E1=EaR(i)
call pene(E1,La(i),at1,zt1,ap1,zp1,TaR(i))
write(11,*)’Alpha Transmission: ’,TaR(i)
E2=EnR(i)
call pene(E2,Ln(i),at2,zt2,ap2,zp2,TnR(i))
write(11,*)’Neutron Transmission: ’,TnR(i)
write(6,*)’Spectroscopic factor for the entrance channel:’
read(5,*)C2Sa(i)
write(11,*)’Entrance Spectroscopic factor: ’,C2Sa(i)
write(6,*)’Spectroscopic factor for the exit channel:’
read(5,*)C2Sn(i)
write(11,*)’Exit Spectroscopic factor: ’,C2Sn(i)
write(6,*)’Alpha width:’
read(5,*)gammaa(i)
write(6,*)’Neutron width:’
read(5,*)gamman(i)
gammar(i)=gammaa(i)+gamman(i)
write(11,*)’Alpha resonance width: ’,gammaa(i)
write(11,*)’Neutron Resonance width: ’,gamman(i)
write(11,*)’Total Resonance width: ’,gammar(i)
omega=2.0*La(i)+1.0
restrength=(C2Sa(i)*TaR(i)*C2Sn(i)*TnR(i))/gammar(i)
omgam=omega*restrength
omgam=omgam*10**-6.0
xmu=(at1*ap1)/(at1+ap1)
wave=(hbar*10.0**-6.0)
wave=wave*sol
write(11,*)wave,xmu
wave=wave/DSQRT(2.0*xmu*eamu*EaR(i))
wave=wave*100
sigmar(i)=pi*(wave**2.0)*omega*gamman(i)*gammaa(i)
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sigmar(i)=sigmar(i)/((gammar(i)/2.0)**2.0)
write(11,*)’Resonant Cross Section: ’,sigmar(i),wave
write(11,*)’ ’

END DO

write(6,*)’Do you want to include interference terms’
write(6,*)’in the calculation? (y=1,n=0)’
read(5,*)k2

IF(k2.EQ.0) GOTO 236

IF(k2.EQ.1) THEN
DO i=1,n

DO j=1,n
IF(L(j).EQ.L(i)) m(i,j,L(j))=1
IF(m(i,j,L(j)).EQ.m(j,i,L(j))) m(i,j,L(j))=0.0

END DO
END DO

END IF

DO i=1,10
DO j=1,10

DO kk=1,10
IF(m(i,j,kk).EQ.1.0) THEN

write(6,*)’There is interference between energy level’
write(6,*)’number ’,i,’ and energy level number ’,j
write(6,*)’which both have the same spin of ’,kk

END IF
END DO

END DO
END DO

236 write(6,*)’here’

write(6,*)’k =’,k
DO jj=1,1000

x=jj*0.01+0.0016
y=x
z=func(x)
write(10,*)y,z

END DO

k=1.0

write(6,*)’Do you want to run this program for a specific’
write(6,*)’temperature, or a range of temperatures?’
write(6,*)’(specific=0, range=1)’
read(5,*)mm
IF(mm.EQ.0) GOTO 100
IF(mm.EQ.1) GOTO 300

100 write(6,*)’Please enter a temperature in GK:’
read(5,*)Temp9
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Temp=Temp9*10**9.0
aint=DGAUSS(func,a,b,eps)
write(6,*)’For T9= ’,Temp9,’rate =’,aint
aint2=DGAUSS(func2,a,b,eps)
write(6,*)’+ interference rate =’,aint2
aint3=DGAUSS(func3,a,b,eps)
write(6,*)’- interference rate =’,aint3
write(12,900)Temp9,aint !,p

900 format (D25.13,D25.13) !D20.13)

write(6,*)’Would you like to run the program for a different’
write(6,*)’temperature (GK) (y=1/n=0)?’
read(5,*)q
IF (q.EQ.1) GOTO 100
IF (q.EQ.0) GOTO 200

300 write(6,*)’Please enter minimum and maximum temperatures in GK:’
read(5,*)T9min, T9max
write(6,*)’how many data points would you like?’
read(5,*)num
step=(T9max-T9min)/num
write(6,*)’The step size is ’,step,’ GK’

DO j=0,num
T9=T9min+(j*step)
Temp=T9*10**9
aint=DGAUSS(func,a,b,eps)
aint2=DGAUSS(func2,a,b,eps)
aint3=DGAUSS(func3,a,b,eps)
write(12,800)T9,aint,aint2,aint3

800 format (D25.13,D25.13,D25.13,D25.13)
END DO

write(6,*)’see rate.out for results!’

200 write(6,*)’Thank you for using this program.’
write(6,*)’Please use it again soon.’
write(6,*)’Goodbye ’,name,’ !’

DO i=1,n
write(14,*)’values for energy level number’,i,’:’
write(14,*)’Energy of resonance: ’,ER(i)
write(14,*)’Alpha energy: ’,EaR(i)
write(14,*)’Neutron Energy: ’,EnR(i)
write(14,*)’Total Resonance width: ’,gammar(i)
write(14,*)’J of state: ’,L(i)
write(14,*)’Ang Mom change, entrance channel: ’,La(i)
write(14,*)’Ang Mom change, exit channel: ’,Ln(i)
write(14,*)’Alpha Transmission: ’,TaR(i)
write(14,*)’Neutron Transmission: ’,TnR(i)
write(14,*)’Entrance Spectroscopic factor: ’,C2Sa(i)
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write(14,*)’Exit Spectroscopic factor: ’,C2Sn(i)
write(14,*)’Alpha resonance width: ’,gammaa(i)
write(14,*)’Neutron Resonance width: ’,gamman(i)
write(14,*)’Resonant Cross Section: ’,sigmar(i)
write(14,*)’ ’

END DO

DO i=1,10
DO j=1,10

DO nn=1,5
IF(nn.EQ.1) write(20,*)i,j,nn,m(i,j,1)
IF(nn.EQ.2) write(21,*)i,j,nn,m(i,j,2)
IF(nn.EQ.3) write(22,*)i,j,nn,m(i,j,3)
IF(nn.EQ.4) write(23,*)i,j,nn,m(i,j,4)
IF(nn.EQ.5) write(24,*)i,j,nn,m(i,j,5)

END DO
END DO

END DO

close(10)
close(11)
close(12)
close(13)
close(14)
close(15)
close(16)
close(17)
close(18)
close(19)
close(20)
close(21)
close(22)
close(23)
close(24)
close(25)
close(26)

end

9.2 THE FUNCTIONS

func

real*8 function func(E)
implicit real*8 (a-h,o-z)
common /MandZ/at1,zt1,ap1,zp1,r1,at2,zt2,ap2,zp2,Temp,amu

C common /resonance/ER,sigmar,C2Sa,C2Sn,gammar,TaR,TnR,ERa,La,Ln
common /energy/Er(10),EaR(10),EnR(10),Gammar(10),TnR(10),TaR(10)
common /width/C2Sn(10),C2Sa(10),Gamman(10),Gammaa(10),sigmar(10)
common /crosssection/ csec(10)
common /integer/n
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common /angmon/Ln(10),L(10),La(10)
common /flag/k,k2
common /interference/ m(10,10,10),sigmatotplus,sigmatotminus
common /identifier/ number(10)
common /something/ d(10)
real gammae(10)

E2=E
En=E+7.4104-6.8120
bk=8.6171D-5
bkMeV=8.6171D-11
func=0.0
sigmatot=0.0
sigmatotplus=0.0
sigmatotminus=0.0
sigmatotplus2=0.0
sigmatotminus2=0.0
AvNo=6.02217D19
sol=2.998D+8
eamu=931.502
pi=3.141592654

DO i=1,n
csec(i)=0.0
d(i)=0.0

END DO

DO i=1,n
call pene(E,La(i),at1,zt1,ap1,zp1,T)
Ta=T
call pene(En,Ln(i),at2,zt2,ap2,zp2,T)
Tn=T
a=(Ta*Tn)/(TaR(i)*TnR(i))
b=((gammar(i)/2.0)**2.0)
c=((E2-EaR(i))*10D06)**2.0+((c2Sa(i)*Ta+c2Sn(i)*Tn)/2.0)**2.0
d(i)=(EaR(i)/E2)*a*(b/c)
csec(i)=sigmar(i)*d(i)
gammae(i)=c2sa(i)*Ta+c2sn(i)*Tn
sigmatot=sigmatot+csec(i)
write(15,900)E2,En,ER(i),(EaR(i)/E2),a,(b/c),Ta,Tn
a=0.0
b=0.0
c=0.0
E=E2
En=E2+7.4104-6.8120

END DO

C IF(k.EQ.0.0) GOTO 287

sigmatotplus=sigmatot
sigmatotminus=sigmatot
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DO i=1,10
DO j=1,10

DO nn=0,9
IF(m(i,j,nn).EQ.1.AND.L(i).EQ.nn.AND.L(j).EQ.nn) THEN

IF(DABS(E2-EaR(i)).LT.1.0D-4) THEN
q2=90.0

ELSE
q=(gammar(i)/2.0)/((E2-Ear(i))*10.0**6.0)
q2=-DATAN(q)/pi*180.0
IF(E2.GT.EaR(i)) q2=q2+180

END IF
IF(DABS(E2-EaR(j)).LT.1.0D-4) THEN

s2=90.0
ELSE

s=(gammar(j)/2.0)/((E2-Ear(j))*10.0**6.0)
s2=-DATAN(s)/pi*180.0
IF(E2.GT.EaR(j)) s2=s2+180.0

END IF
IF(k.EQ.0.AND.nn.EQ.4) write(19,900)E2,q2,s2
delta=q2-s2
delta=-DCOS(delta*pi/180.0)
IF(k.EQ.0.AND.nn.EQ.2) write(17,*)E2,delta
IF(k.EQ.0.AND.nn.EQ.4) write(18,*)E2,delta
sigma int=2.0*DSQRT(csec(i)*csec(j))*delta

ELSE
sigma int=0.0

END IF
sigmatotplus=sigmatotplus+sigma int
sigmatotminus=sigmatotminus-sigma int
END DO

END DO
END DO

IF(k.EQ.0) THEN
func=sigmatot
write(13,900)E2,csec,sigmatot
write(16,900)E2,sigmatot,sigmatotplus,sigmatotminus

C & sigmatotplus4,sigmatotminus4,sigmatotplus2,
C & sigmatotminus2,sigmatotplus3,sigmatotminus3
900 format(10D15.6)

END IF

IF(k.EQ.1) THEN
f=DEXP((-E2*10**6.0)/(bk*Temp))
g=(1.0/((bkMeV*Temp)**(1.5)))
h=(8.0*(sol*100.0)**2.0/(pi*amu*eamu))**0.5
func=sigmatot*E2*f*g*h*AvNo

END IF

C write(10,*)E2,func
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C write(6,*)Ta,Tn,a,b,c

end

func2

real*8 function func2(E)
implicit real*8 (a-h,o-z)
common /MandZ/at1,zt1,ap1,zp1,r1,at2,zt2,ap2,zp2,Temp,amu

C common /resonance/ER,sigmar,C2Sa,C2Sn,gammar,TaR,TnR,ERa,La,Ln
common /energy/Er(10),EaR(10),EnR(10),Gammar(10),TnR(10),TaR(10)
common /width/C2Sn(10),C2Sa(10),Gamman(10),Gammaa(10),sigmar(10)
common /crosssection/ csec(10)
common /integer/n
common /angmon/Ln(10),L(10),La(10)
common /flag/k,k2
common /interference/ m(10,10,10),sigmatotplus,sigmatotminus
common /identifier/ number(10)
common /something/ d(10)
external func

E2=E
En=E+7.4104-6.8120
bk=8.6171D-5
bkMeV=8.6171D-11
AvNo=6.02217D19
sol=2.998D+8
eamu=931.502
pi=3.141592654

xarg=func(E2)

f=DEXP((-E*10**6.0)/(bk*Temp))
g=(1.0/((bkMeV*Temp)**(1.5)))
h=(8.0*(sol*100.0)**2.0/(pi*amu*eamu))**0.5
func2=sigmatotplus*E*f*g*h*AvNo

end

func 3

real*8 function func3(E)
implicit real*8 (a-h,o-z)
common /MandZ/at1,zt1,ap1,zp1,r1,at2,zt2,ap2,zp2,Temp,amu

C common /resonance/ER,sigmar,C2Sa,C2Sn,gammar,TaR,TnR,ERa,La,Ln
common /energy/Er(10),EaR(10),EnR(10),Gammar(10),TnR(10),TaR(10)
common /width/C2Sn(10),C2Sa(10),Gamman(10),Gammaa(10),sigmar(10)
common /crosssection/ csec(10)
common /integer/n
common /angmon/Ln(10),L(10),La(10)
common /flag/k,k2
common /interference/ m(10,10,10),sigmatotplus,sigmatotminus
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common /identifier/ number(10)
common /something/ d(10)
external func

E2=E
En=E+7.4104-6.8120
bk=8.6171D-5
bkMeV=8.6171D-11
AvNo=6.02217D19
sol=2.998D+8
eamu=931.502
pi=3.141592654

xarg=func(E2)

f=DEXP((-E*10**6.0)/(bk*Temp))
g=(1.0/((bkMeV*Temp)**(1.5)))
h=(8.0*(sol*100.0)**2.0/(pi*amu*eamu))**0.5
func3=sigmatotminus*E*f*g*h*AvNo

end
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10 APPENDIX III: FUNCTIONAL FITS

10.1 6He(α,n)9Be REACTION RATE FIT

The reaction rate was divided into two regions, one for T9 ≥ 1, and one for T9

< 1. The following function was fitted to each region,

f = exp
(

a1 + a2T
−1
9 + a3T

−1

3

9 + a4T
1

3

9 + a5T9 + a6T
5

3

9 + a0 × 2.30285093 log(T9)
)

.

(70)
The coefficients a0 through a6 are constants and are tabulated for each energy
region in Table (8).

T9 a0 a1 a2 a3 a4 a5 a6

≥1 -305.959 -43.9195 1.6697 -466.654 528.328 -20.4128 0.776993
< 1 186.298 371.844 -3.70735 157.857 -597.867 83.3726 -11.3821

Table 8: Fit coefficients for the reaction rate of 6He(α,n)9Be.

10.2 n-n SCATTERING CROSS-SECTION FIT

To find an adequate fit for the n-n scattering cross-section, the curve was split
up into 4 different energy regions, and a fit was found for each region. Table (9)
contains the 4 equations used in the programs TWOSTEP2 and TWOSTEPDC
to describe the n-n cross-section. The χ2 coefficients and correlation coefficients
are also tabulated, to indicate how well the four functional fits described the
experimental data.

E / MeV 0 ≤ E ≤ 0.5 0.5 < E ≤ 1.0 1.0 < E ≤ 2.0 E > 2.0

functional f=d0exp(d1E
d2) f=d0E

d1 f= d0 / E f= d0 / E

form ×exp(d3E
d4)

d0 19278.7 1951.8 1960.99 1939.4
d1 104.868 -0.882419
d2 1.07744
d3 -106.761
d4 1.05569

χ2 37683.1 1292.1 2292.39 6253.73

Correlation 0.999949 0.999872 0.999905 0.99985
Coefficient

Table 9: Function fits and coefficients used to describe the n-n scattering cross-
section. The χ2 value and the correlation coefficient are also tabulated for each
fit.
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Coefficients

g0 5.136
g1 -9.05657 × 10−5

g2 0.159758
g3 -3.06484
g4 0.0225038
g5 -0.0119313
g6 0.969653

Table 10: The coefficients of the functional fit of the 2n direct capture cross-
section.

10.3 DINEUTRON DIRECT CAPTURE CROSS-SECTION
FIT

An equation of the form

f = exp
(

g0 + g1E
−1 + g2E

−1

3 + g3E
1

3 + g4E + g5E
5

3

)

×Eg6 , (71)

where the coefficients g0 to g6 are tabulated in Table (10) and E is the Energy
in MeV, was fitted to the 2n direct capture cross-section.

However, if E < 1 × 10−5 then

f = 21.838×E0.50008. (72)

10.4 4He(2n,γ)6He REACTION RATE FIT

The following equation was fitted to the 4He(2n,γ)6He reaction rate,

f = exp
(

b1 + b2T
−1
9 + b3T

−1

3

9 + b4T
1

3

9 + b5T9 + b6T
5

3

9

)

× T b7
9 . (73)

The coefficients b1 through b7 are tabulated in Table (11).
An r-process simulation was also run using the reaction rate calculated pre-

viously in [3]. Therefore a fit also had to be found for this rate. For T9 ≤
5

f = exp
(

c0 + c1T9 + c2T
2
9 + c3T

3
9 + c4T

4
9 + c5T

5
9 + c6T

c6
9 + c7T

7
9

)

, (74)

and for T9 > 5

b1 b2 b3 b4 b5 b6 b7

-13.4297 0.0220173 -0.750282 -2.92964 0.059314 -0.00259048 1.52535

Table 11: Fit coefficients for the reaction rate of 4He(2n,γ)6He.
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f = 6.7× 10−10 T9 > 5. (75)

The coefficients c0 through c7 are tabulated in Table (12).

coefficient

c0 -25.6195
c1 3.22718
c2 -2.03827
c3 0.531853
c4 -0.075149
c5 0.00419848
c6 1.0834
c7 5.8321 × 10−6

Table 12: Fit coefficients for the reaction rate of 4He(2n,γ)6He calculated in [3].
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