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  The thirty five neutron deficient stable nuclei known as the p-nuclei are 

synthesized in a series of photodisintegration reactions of the (γ,n), (γ,p) and (γ,α) type in 

a hot γ-flux environment.   

  Abundance calculations involve an extended network of about 20,000 nuclear 

reactions of almost 2000 nuclei.  The bulk of these rates are calculated theoretically with 

the statistical Hauser Feshbach Model (HF Model).  Of particular importance in the p-

process modeling are the (γ,α) branchings. 

  Even though in the astrophysical environment it is photodisintegration reactions 

that synthesize the p-nuclei, in the laboratory it is the inverse process that is generally 

measured.  By detailed balance, it is possible to arrive at the relevant reactions.    The 

experimental data for α-capture reactions is scarce since at the p-process temperatures (2-

3 GK), the α-particle energies are typically of a few MeV and the corresponding cross 
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sections very small.  In addition, the results show a significant deviation compared to the 

model predictions.    

              The HF cross sections are governed by transmission coefficients.  These are 

extracted from an appropriate optical model potential (OMP).  The α-nucleus potential in 

particular is poorly known at low energies mainly due to the lack of relevant data.  The 

observed inconsistencies between the predicted and measured (α,γ) rates may be due to 

problems with this α-potential parameter.   

     To explore the applicability of the Hauser Feshbach model, to extend the 

experimental database of α-capture reactions on p-nuclei, to test the global 

parameterizations that currently exist, and to constrain the α-nucleus potential, the α-

capture cross section of 106Cd(α,γ)110Sn and the local α-nucleus potentials of 106Cd, 118Sn, 

and 120, 124, 126, 128,130Te have been measured and extracted.  The experiments have been 

carried out at the University of Notre Dame.  The results are presented here.       
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CHAPTER 1  

INTRODUCTION 

 

  “In principio erat Verbum”  

 

     To understand the lure of astrophysics, one has only to gaze up at the sky on a 

dark night and see the illumination offered by the stars.  It is this celestial brilliance that 

inspires so many of us but that seems to touch a chord of longing deep within an 

astrophysicist.  This longing is not only to gaze but to understand the mechanism 

responsible for this brilliance.  A nuclear physicist, on the other hand, expresses their 

passion through precision.  Unlocking the secrets of the atomic nuclei and their 

interaction with one another requires dedication and efficiency and the knowledge therein 

gives power to those willing to probe its mysteries.  But a nuclear astrophysicist is not 

contented by staying within one realm.  Their great ambition drives them, step by 

agonizing step, to bring the celestial to earth.  The heavens are the inspiration but the 

laboratory is the playing field.   

   Saying that the goal of nuclear astrophysics is to understand how the heavy 

elements formed is true, but it is also trite.  As Carl Sagan said: “We are all made of star 

stuff”.  Nuclear astrophysics is about understanding our origins.  It is not about starting at 
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the very beginning where conditions were very dense, hot, totally alien and very difficult 

to probe.  Instead, we start at a place that seems to be more familiar, a place where we  

trust the extrapolation to the present.  It may not be primordial nucleosynthesis but it still 

is nucleosynthesis and placing it on a terrestrial plane of existence is revolutionary.  

Thomas Kuhn tells us “scientific advancement is not evolutionary, but rather is a series of 

peaceful interludes punctuated by intellectually violent revolutions, and in those 

revolutions one conceptual world view is replaced by another."  Here then the grand 

ambition of the nuclear astrophysicist is revealed - a paradigm shift.  Understanding the 

formation of the elements is not then just an esoteric pastime but rather it is about the 

possible application of a faraway nucleosynthesis process for practical purposes.   

  Some of the first questions addressed in this field were “How does the Sun shine?”  

“What are its working mechanisms?”.  This question was answered in the 1950’s by 

Burbidge, Burbidge, Fowler, and Hoyle [1] and simultaneously by Cameron [2] who put 

it in the framework of a nuclear physics perspective (fusion reactions between protons 

were the Sun’s main energy source).  In addition, they postulated how all of the elements 

we find in nature were produced.  At first, it seemed that the picture proposed by [1,2] 

was capable of explaining the origin and abundance of almost all stable (and long-living 

unstable) isotopes in our Solar System.  Network calculations of the nucleosynthesis path 

of the abundance distribution as a function of time showed the necessity of improving the 

descriptions of the different astrophysical processes and the astrophysical sites of 

synthesis.       



 

3  

         Unfortunately, many of the reaction rates (average value of the product of the 

relative velocity of the interacting nuclei times their cross section) necessary to accurately 

model the synthesis path of the p-process are experimentally unknown and they must rely  

on theoretical estimates.  These rates, which are necessary inputs into the network 

simulation, are mainly determined via what is known as the statistical model of 

compound nuclear reactions.  Of particular importance for the determination of the (γ,α) 

rates is the α-nucleus optical potential.  Its relevance, application, and determination will 

be discussed in the forthcoming chapters.      
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1.1 Stellar burning phases 

     The first stage of a star’s life cycle involves the burning of hydrogen in thermal 

and hydrostatic equilibrium.  This can proceed via either the pp chain or the CNO cycle.  

At low temperatures, it is the pp chain that is mainly responsible for the synthesis.  

Higher temperatures allow nuclei with higher coulomb barriers to be penetrated and 

hence the CNO cycle becomes more efficient for temperatures in excess of 18 MK [3,4].   

     When hydrogen burning ceases in the center of the star, the helium core 

contracts under gravity and grows hotter.  This increased temperature promotes hydrogen 

burning in a shell surrounding the core.  As this hydrogen burning continues in the shell, 

more helium is produced and deposited onto a helium core which becomes hotter and 

denser.  Helium burning is severely hindered by the absence of stable nuclei with mass 5 

and mass 8.  The only way forward is for three alpha particles to fuse in a two step 

reaction to form 12C.  As helium is consumed in the center of the star, helium burning 

migrates to a shell surrounding a central core of C and O, leading to an onion-like 

structure for the star in which there is an outer hydrogen burning layer, an inner helium 

burning layer and a core of C and O.      

   For stars with masses greater than about 8-10 solar masses, carbon begins to 

burn [5].  The most likely reactions in carbon burning are 12C(12C,p)23Na and 

12C(12C,α)20Ne.  At the end of core carbon burning, the core consists mainly of 16O, 20Ne, 

23Na, and 24Mg (most of the 12C nuclei have been consumed).  Neon burning will proceed 

primarily through the photodisintegration reaction: 20Ne(γ,α)16O.  The α particles that are 

liberated in the primary reaction will be captured by the remaining 20Ne and form 24Mg. 
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After the neon fuel has been consumed, the 16O(16O,α)28Si reaction is the most likely to 

occur since it has the lowest Coulomb barrier.  The last burning phase is Si burning.  The 

nucleosynthesis up to the Fe/Ni region occurs via photodisintegrations of lower mass 

nuclei and by alpha captures liberated from the 28Si(γ,α)24Mg reaction.   

1.2 Supernova Type II 

 Due to the formation of an envelope over the central region after the end of each 

burning phase, the star looks like an onion with various skins of different compositions.  

The internal pressure cannot halt the gravitational collapse and the core shrinks.  As the 

temperature increases, the iron group nuclei are photodisintegrated into neutrons and 

protons with the latter capturing free electrons ( npe e +→+ ν ).  The neutrinos escape 

and the decrease of electron pressure decreases the internal pressure and the core 

continues to collapse to a nucleus of neutrons ( .  The collapse is thus 

halted but the outer layers are still falling and they will rebound forming a shock front.  

The shockwave will again induce burning in the outer layers (C, Ne, O, Si) and will 

create p-nuclei in the O-Ne layer (Section 1.3.3).       

)/10 314 cmg≈ρ

1.3 Nucleosynthesis of the heavy elements 

  Since the binding energy per nucleon reaches a peak in the Fe/Ni region, further 

fusion processes cannot take place due to the high Coulomb barrier.  Current  

astrophysical models account for the production of the majority of the nuclear isotopes  

beyond the A ≈ 56 region by neutron captures (the s- and r-process).   
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1.3.1  The s-process 

     The slow-neutron capture process (s-process) occurs at relatively low neutron 

densities (106 cm-3) and intermediate temperatures (T ≈ 1-3 x 108 K).  Under these 

conditions, the rate of neutron capture is slow relative to the rate of β- decay.  

Approximately half of the isotopes heavier than iron are produced in this way.   

       The synthesis takes place during the Hydrogen-Helium intershell burning 

phase of Asymptotic Giant Branch (AGB) stars at relatively low temperatures (1x108 K) 

[6].  During this phase, the mean neutron capture rate is only about one per year (this is 

what keeps the path close to the valley of stability).  Fig.1 shows a schematic 

representation of the s-process.  The main neutron source component comes from the 

13C(α,n)16O reaction while there is an additional neutron contribution  that comes from 

22Ne(α,n)25Mg.  In addition, this reaction is the main neutron source driving the synthesis 

of nuclides in the A ≈ 60-90 mass range [7,8].  This happens during the Helium core 

burning phase of massive stars at higher temperatures (T ≈ 3x108 K) [7].  The size of the 

22Ne(α,n)25Mg reaction rate used in stellar models can have a significant effect on the 

predicted abundances of the p isotopes (Section 1.3.3) [9]. 
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Figure 1.1 Schematic representation of the neutron capture processes in astrophysical 
scenarios. The s–process path along the valley of stability is marked by the red solid 
arrows. Once an unstable nucleus is created within this process after several (n,γ) 
reactions, because of the low neutron capture rate, it decays back to stability. During r–
process nucleosynthesis, after several successive neutron capture reactions, very neutron 
rich species (thick dashed pink line) are produced. Once the neutron flux disappears, 
these nuclei β- decay (dotted pink arrows) back to stability [10]. 

 

1.3.2 The r-process 

       Compared to the s-process, the time scale for the rapid neutron capture 

process (r-process) is on the order of a few seconds.  In such an intense neutron flux  

(Nn ≈ 1021/ cm3), very neutron rich species are created.  A series of neutron captures will 

occur until an equilibrium is reached between (γ,n) and (n,γ) reactions (Fig. 1.1).  At this 

point, there is an accumulation of material until a β- decay occurs (moving up to the next 

higher Z), and the process repeats.  Equilibrium is generally established for nuclei with  
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large binding energies (neutron separation energy).  A longer waiting point half life 

corresponds to a greater abundance of these isotopes.  An enhancement in the production 

of nuclei with closed shells is observed.   

1.3.3 The p-process 

       The 35 stable neutron deficient nuclei ranging from 74Se to 196Hg are shielded 

from neutron capture processes and require a different mechanism of production.  These 

are the p-nuclei (they contain more protons relative to other stable isotopes of the same 

element).  A list of the p-nuclei and their associated abundances is given in Table 1.1.  

The solar system abundances of the p-nuclei are displayed in Fig. 1.2 where they are 

compared to abundances that originate from the s- and r- processes.  They are typically 

smaller by a factor of 100.  The abundance pattern for these proton-rich nuclei is similar  

to that of the neutron-rich isotopes, as enhancements in the abundance of those nuclei 

with closed nuclear shells (92Mo, N=50; Sn isotopes, Z=50; 144Sm, N=82) are evident. 

       Burbidge et al. [1] proposed a process in which (p,γ) reactions or (γ,n) 

reactions were responsible for the synthesis of a number of proton rich isotopes.  Very 

high temperatures (T9 = 2-3) and proton densities ( ≥ 102 g/cm3) are required in this 

scenario.  Due to the increasing Coulomb barrier for heavy nuclei, proton capture is 

negligible for nuclei with Z ≥ 54 [11].  For the heavier species, nucleosynthesis works 

mainly via photodisintegration reactions, producing very proton rich nuclei via (γ,n), 

(γ,α) and (γ,p) reactions. 
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TABLE 1.1 

LIST OF ALL 35 p–NUCLEI 

 

The solar abundance (normalized to Si = 106) data are taken from [12]. 
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Figure 1.2 Abundance distribution in the solar system above the iron peak normalized to 
Si = 106 (bold line). Elements created solely within one of the described neutron capture 
(s–only, open squares; r–only, filled circles) or photodistintegration (p–only, open 
circles) processes are also displayed. It is possible to observe the different structures 
originating from each of the neutron capture processes [10].  

 

     The currently favored astrophysical site for p-process nucleosynthesis is a Type 

II supernova [13,14,15,16].  The shock front heats the O-Ne layer to temperatures of 2-3 

GK which is sufficient for photodisintegrations to occur (temperatures of 1.5 GK are 

required).  S-process seed [17] is converted by subsequent (γ,n) reactions toward the 

neutron-deficient region.  As the flow moves along the isotopic chain, the neutron 

separation energy increases.  When the (γ,p) or (γ,α) reaction dominates over the (γ,n) 

reaction (the branch point is satisfied by the decay constants: λγp +λγα > λγn) [18], the 

flow will then branch off to an isotope of a different element.  Once the photon bath 

disappears, some β-decays, e- captures, or (n,γ) reactions can possibly complete the 

nuclear flow [13].  
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    An accurate determination of the (γ,α), (γ,p) and (γ,n) reaction rates is extremely 

important for nuclei at which the p-process path branches.  Figure 1.3 shows the 

abundance evolution in 14 different O-Ne layers for a 25 solar mass star during 1s of the 

explosion [19].  The general trend is that in the higher mass region (A = 140), a global 

variation of the (α,γ) and (γ,α) rates has a very strong impact on the p-abundances [19].  

In addition, the s-process component 22Ne(α,n) strongly enhances the p-process seed 

abundances in the A ≈ 60-90 region [9].  Most of the p-nuclei are reproduced to within a 

factor of 3 of their solar system values; however, a number of discrepancies exist.  

Mainly the underproduction of the light p-nuclei: 92Mo, 94Mo, 96Ru, and 98Ru.  There has 

been some speculation that the 22Ne(α,n) source might be more efficient than previously 

thought which would cause a substantial enhancement in the abundances of 92Mo and 

96Ru [9]; however, this would result in an enormous overproduction of the s-process 

nuclei.  In addition to 92,94Mo and 96,98Ru, 113In, 115Sn and 138La are also underproduced in 

most calculations [13,20,21].  Several other astrophysical sites have been considered for 

the production of p-nuclei, including supernovae of Type Ia [22]; however, none of these 

other sites solves the underproduction problem.  
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Figure 1.3 P-Process abundance evolution for a 25 solar mass star considering 14 
different mass layers of the O-Ne burning zone [19]. 
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CHAPTER 2   

ASTROPHYSICAL FRAMEWORK 

      Nuclear reactions explain the bulk of the solar-system abundance distribution; 

however it is important to understand which measurements have an astrophysical 

relevance.  To transform from the pure nuclear physics regime to the astrophysical realm, 

in particular to model the abundance distribution, a framework must be established. 

2.1 The S-factor 

  In a nuclear reaction, a projectile will penetrate a target nucleus (by tunneling 

through the Coulomb barrier) in order to form a compound nucleus.  The probability that 

the particle penetrates the barrier is: 

        P = exp (-2πη)                        (2.1) 

The quantity η is the Sommerfeld parameter and is defined by: 

                             
E
MeVZZ

v
eZZ

TP
TP ⋅

≈=
μη 1575.0

2

h
                              (2.2) 

where Zp · e and ZT · e are the charges of the projectile and target; v is the relative velocity 

between projectile and target, μ is the reduced mass and E is the center-of-mass energy 

(in MeV). 
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    The cross section σ(E) for charged-particle-induced reactions, which is 

proportional to the tunneling probability P, is usually expressed in terms of the 

astrophysical S-factor: 

      S(E) = σ(E) E exp(2πη)             (2.3)  

This expression is valid for nonresonant reactions only.   

 

2.2 Reaction rates and the Gamow window 

  The reaction rate <σv> per particle pair under astrophysical conditions involves 

the Maxwell-Boltzmann velocity distribution of the particles φ(v), the relative particle 

velocity v and the corresponding reaction cross section σ(v): 

      <σv>=  ∫ ⋅⋅ vdvvv )()( σφ                         (2.4) 

Using the center-of-mass energy 2

2
1 vE μ= and the Maxwell-Boltzmann transformed 

distribution )()(
2

exp
2

4)(
2

22

kT
v

kT
vv μ

π
μπφ −

= , the reaction rate per particle pair can be 

written in the form: 

              <σv> = dE
kT
EEE

kT ∫
∞

⎟
⎠
⎞

⎜
⎝
⎛−⋅⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

0
2/3

2/1

exp)(
)(

18 σ
πμ

                        (2.5) 

By inserting the definition of the S-factor (equation 2.3) into equation 2.5 it is possible to 

express the reaction rate per particle pair as: 

 



 

15  

           <σv> = dE
E

b
kT
EES

kT ∫
∞

⎟
⎠
⎞

⎜
⎝
⎛ −−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

0
2/12/3

2/1

exp)(
)(

18
πμ

                                  (2.6) 

where the quantity b arises from barrier penetrability.  The quantity b2 is also called the 

Gamow energy, EG, and is given by the expression: 

    EG = μπμ 22
22

978.02 TP
TP ZZeZZ

≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
h

 MeV              (2.7) 

The total reaction rate rxy can be obtained by multiplying the term <σv> by the absolute  

number of nuclei Nx and Ny: 

    Rxy = Nx·Ny·<σv>·(1+δxy)-1                          (2.8) 

δxy is a function that accounts for the case when the reaction is between identical particles 

x = y. 

 For a given stellar temperature T, nuclear reactions take place within a narrow 

energy region around the effective burning temperature Eo.  Often, S(E) is nearly constant 

over the window S(E) = S(Eo) = constant.  Taking the derivative of the integrand in 

equation 2.6:  

  3/12
6

2
2

2
1

3/2
0 )(22.1)

2
( TZZbkTE μ==                                      (2.9) 

Eo is the effective mean energy for thermonuclear fusion reactions at a given temperature 

T.   The width of the energy window is given as:       

                               (2.10) 6/15
6

2
2

2
1 )(749.0 TZZ μ=Δ

Nuclear burning reactions take place predominantly over the energy window 

2
Δ

±= oEE also known as the Gamow window.  For p-process temperatures of 2-3 GK,  
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assuming α-capture on a target nucleus of 120Te, the Gamow window is from 5.2 to 10  

MeV.  Laboratory measurements would then be made within this energy range.  

      

2.3 Detailed Balance theorem       

   Consider the reaction A + a  B + b, where A and a denote the target and 

projectile, respectively, and B and b are the reaction products.  Since these processes are 

invariant under time reversal, the cross section of the forward reaction is related to that of 

the reverse.  At a given total energy, the corresponding cross sections are not equal but 

are related as: 

→

      
)1()12)(12(
)1()12)(12(

2

2

AaBbbB

BbAaaA

BbAa

AaBb

kjj
kjj

δ
δ

σ
σ

+++
+++

=
→

→                          (2.11) 

where ji denotes the spin of the respective particle (δ is defined in the same way as in 

equation 2.8).  The cross section AaBb→σ can be calculated independently from any 

assumptions regarding the reaction mechanism, if the quantity BbAa→σ  is known.   

      In the lab, all cross section measurements assume a target nucleus in the 

ground state.  In the stellar plasma, the nuclei are in thermal equilibrium and hence the 

target can be in an excited state.  Before using the measured cross section for network 

simulations, it is necessary to transform it to a stellar cross section ( ): *σ

       
)/exp()12(

)()exp()12(
)( *

*
*

kTEJ

E
kT

E
J

E
ii

ij
i

i

ij μμ
μ

μν
ν

μ
μ

μ σ
σ

−+Σ

Σ
−

+Σ
=                         (2.12)       

where T* is the plasma temperature, μ is the target state, ν is the final nucleus state and Jμ  



 

17  

are the spins of the target nuclei.  Oftentimes, the cross section measured in the lab can 

differ significantly from the stellar cross section.   

    For astrophysical applications, it is often most convenient to calculate the 

laboratory reaction rate (equation 2.5) which can then be multiplied by a correction factor 

(known as the stellar enhancement factor) [23] that accounts for the influence of the 

excited target states: 

    
〉〈

〉〈
=

νσ
νσ

labf
*

*                                                     (2.13) 

Since both capture and photodissociation reactions are necessary inputs into a network 

simulation (Section 2.4) [19], the stellar reaction rate of the reverse reaction can then be 

obtained: 

     *
*

*
2/3* *

)()12)(12(
)()12)(12(

)( 〉〈
++

++
=〉〈

−
νσνσ iA

kT
Q

mmo

iji

mo

ji
mA Ne

TGJJ
TGJJ

AA
AA

N    (2.14) 

where i and j are the entrance channels and o and m the exit channels, G is the partition  

function, F is a numerical factor and  

                                              (2.15)      392/3
9

* 108685.9 −⋅= cmmolxTT

2.4 Input for Network Calculations 

     Nuclear reaction network calculations are necessary to follow the time 

evolution of the isotopic abundances to determine the amount of energy released by  

nuclear reactions and to find the reaction path.  The reaction network is defined as a set of 

differential equations for the various isotopic abundances.  The time derivative of the 
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abundance for each isotope is expressed in terms of the reaction rates of the different 

production and depletion reactions [24]: 

lkjlkjA
lkj

i
lkjkj

kj
kjA

i
kjjj

j

i
j

i YYYvNNYYvNNYN
dt

dY
)(

22

,,
,,

,
)(, +++ 〉〈+〉〈+= ∑∑∑ σρσρλ       (2.16) 

where 
i

i
i A

X
Y = (Xi = mass fraction and Ai = mass #), λj = decay and photodisintegration 

rates, )( kjA vN +〉〈σρ = particle capture rates, = particle interaction rates. )(
22

lkjA vN ++〉〈σρ

The ’iN s are given by: 

             i
i
j NN =

)!!(,
kj

ii
kj NN

N
N =    

)!!!(,,
lkj

ii
lkj NNN

N
N =  (2.17) 

The Ni’s represent positive or negative numbers which specify how many particles of 

species i are created or destroyed in the reaction.  The time integrated net reaction flow 

between two isotopes i and j is defined by: 

     dt
dt

dY
dt

dY
F

ij

j

ji

i
ji ][

)()(
,

→→

−= ∫                             (2.18) 

This quantity provides information about the main reaction path during the 

nucleosynthesis event and serves as a tool for monitoring the effects of nuclear structure 

parameters such as shell closures or deformation on reaction path and reaction branchings 

[19].  

     Network calculations for p-process nucleosynthesis consider about 20,000 

reactions linking close to 2,000 nuclei with A≤ 210 [13,25].  A recent p-process network 

simulation [19] considered the abundance evolution of about 1800 nuclei (from H to Bi) 
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in the framework of a parameterized Type II SN shock front model.  Fig. 1.3 shows the 

reaction flux integrated over a 1s time interval.   

  The knowledge of (γ,α) reaction rates is imperative for the accurate modeling of 

the p-process (both its path and abundance distribution).  Under astrophysical conditions, 

the reaction rate for the photodisintegration reaction (γ,α) λγα is proportional to the 

reaction rate for the inverse (α,γ) capture reaction <σαv>* (i = target state and m =final 

nucleus) [23]: 

     */2/3*
*

*
2/3 *

)(
)(
)(

)12(
)12)(12(

)( vNFeT
TG
TG

J
JJ
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AA
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i σλ αα
γ

−

+
++

=            (2.19) 

where G(T) is the temperature dependent partition function, J is the spin and F is a  
 

numerical factor (as defined in eq. 2.14) and T* is defined in equation 2.15. 
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CHAPTER 3  

THEORY 

 

3.1 Overview: One Piece of the Puzzle 

       For charged particle capture reactions on p-nuclei, the level density in the 

compound system is typically high.  This is due in part to the large nucleon number 

(which intrinsically have a high density of excited states) and the particle energies 

involved for astrophysical applications are relatively high (measurements are made 

within the Gamow window).  The cross section is then dominated by many resonances 

that appear nonresonant [26].  The cross sections can then be approximated using the 

Hauser-Feshbach (HF) approach, a statistical model of compound nuclear reactions.   

     Many nuclear ingredients go into the calculation of the statistical model: level 

densities, masses, energies and widths of the giant dipole resonances (GDR), isospin 

effects, and optical potentials; however, the most important quantities of the Hauser-

Feshbach (HF) model are the particle and γ-transmission coefficients and the level 

density of excited states [23].  While all of the inputs present some uncertainties, it is 

generally the optical model potentials (OMP) and the nuclear level densities (NLD) that 

have been the most problematic [27,28,29].   
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The NLD generally doesn’t show itself to be problematic for α-capture reactions.  Not 

only is this due to the higher bombarding energies involved (the number of states 

increases exponentially with excitation energy) but it is also due to an improved 

treatment of the NLD where its superiority at higher energies has been noted [28,30,31].  

Instead, the theoretical overestimation in cross section when compared to α-capture data 

on p-nuclei is mainly due to an uncertainty in the optical α-nucleus potential at energies 

of astrophysical relevance [23].  

       While the model has been able to reproduce most of the measured (α,γ) 

reactions on p-nuclei to within a factor of 2, much larger deviations have occurred [32].  

In order to increase the accuracy of the model, the goal is to probe it at the local level.  

This can be achieved in two ways: direct measurement of α-capture cross sections 

(within the effective burning regime of the astrophysical environment) which tests the 

validity of the model and the accuracy of the global α-nucleus potentials or by 

determination of the α-nucleus potential itself.  For either case, more experimental data is 

required (this is particularly true in the heavier mass regions where the deviations are 

seen more strongly [32]).   

 

3.2 HF formalism 

      The vast majority of the reaction rates that are inputs into the p-process 

network simulation are derived from theoretically calculated HF cross sections.  The 

model can be applied provided that the level density in the contributing energy window  
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(generally 5-10 levels MeV-1) around the peak of the projectile energy distribution is  

sufficiently high enough to justify a statistical treatment [23].  In essence, it can be 

applied when the average resonance width ( Γ ) is larger than the average level spacing 

(D = 1/ρ) [30].     

    The HF model is based on the Bohr assumption.  The formation and 

disintegration of the compound system into the products of the reaction can be treated as 

independent processes [33].  The cross section can be factored into two terms: 

   )(G)(),( CC βασβασ =                                                    (3.1) 

where )(C ασ is the cross section for the formation of C through channel α and )(GC β  

is the probability that C decays through channel β .  The branching probability can be 

expressed as: 

              
Γ
Γ

β β=)(GC                                                            (3.2) 

where is the partial width for the decay into channel βΓ β  and Γ is the total decay rate. 

In the HF theory, the formation cross section is calculated in the same way as in the 

optical model but using averaged transmission coefficients T  [30].  These averaged 

transmission coefficients are related to the average widths by Γπρ2T =  where ρ is 

the average level density.  The compound nucleus cross section can be derived from the 

Breit-Wigner formula by substituting the resonance parameters with average parameters 

[30].  The Breit-Wigner expression is (for n individual resonances): 

   αβσ BW = 2tot
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The indices i refer to the target, j to the projectile, α to the entrance channel, and β  to 

the exit channel.  The CN cross section is: 

      αβ
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where are the width fluctuation coefficients which correlate the incoming and 

outgoing channels and account for nonstatistical fluctuations by rearranging the flux into 

different channels.  The width fluctuation coefficients ( ) are given as:   

αβW

αβW

       
)E()E(

)E(

)E(
)E()E(

),J,E(W
,J,J

tot
,J

tot
,J

,J,J
β
π

α
π

π

π

β
π

α
παβ

ΓΓ

Γ

Γ
ΓΓ

π =                    (3.5) 

In particular, the elastic channel is enhanced.  The HF cross section is an averaged Breit-

Wigner cross section when = 1 [30]. αβW

      In the statistical Hauser-Feshbach model [34], the cross section for the reaction 

iμ(α,γ)lν in which an incoming α particle is captured by the target nucleus i in its state μ, 

leaving the residual nucleus l and a photon is given by the expression: 

   μ
αγσ  =  ∑ +

+ π
π

π
γ

πμ
α

μ
α

π
λ

J toti JT
JTJT

J
J )(

)()(
)12(

)12(
1

4

2

     (3.6) 

where Ji is the spin of the target.  The variable λα describes the wavelength of the system 

α+i.  The transmission coefficient Tμ
α (Jπ) measures the probability for forming the 

compound nucleus in its state Jπ.  Similarly, Tγ(Jπ) = Σν Tν
γ(Jπ) is the transmission  

coefficient for the decay of the compound nuclear state into the pair l + γ, considering all  

possible states ν of l which can be populated in the decay.  Ttot(Jπ) = Σi,jTλ
i(Jπ)  
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corresponds to the total transmission coefficient for the decay of the compound state into 

any combination i of nucleus and particles j which can be formed from all its possible 

decay modes λ.   

  The transition from an excited state in the compound nucleus to a state in nucleus 

i via the emission of an α particle is given by the summation over all quantum 

mechanically allowed partial waves: 

    )(∑ ∑
+

−=

+

−=

=
sJ

sJl

JJ

JJs
ils

i

i

ETT
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α
μ

μ
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α                            (3.7) 

where l is the angular momentum and s is the channel spin.  When calculating the 

radiative transmission coefficients ( ), the dominant γ-transitions are the electric and 

magnetic dipole transitions (E1 and M1); hence, the total photon width:   

γT

       11 ME TTT +=γ                                         (3.8) 

The M1 transitions are treated in the simple single particle approach (TM1 ∝ E ) [33].  The 

E1 transitions are calculated on the basis of the Lorentzian representation of the giant 

dipole resonance (GDR).  Within this model, the E1 transmission coefficient for the 

transition emitting a photon of energy E

3

γ in a compound nucleus is given by ZA
N

  ∑
= Γ+−

Γ+
=

2

1
22

,
22

,
2

4
,

2

2

1 )[(33
)1(8)(

i iGiG

iG
E EEE

Ei
cMcA

NZeET
γγ

γ
γ

χ
h

                           (3.9)    

where M is the proton mass, χ (= 0.2), and Γ, E are the width and energy of the GDR 

[23]. 
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3.2.1 The potential dependence of the HF transmission coefficients 

     The transmission coefficients for the (α,γ) reaction channel must be known in 

order to perform a correct calculation of the reaction cross section.  In a nuclear reaction, 

a projectile will penetrate a target nucleus (by tunneling through the Coulomb barrier) in 

order to form a compound nucleus.  This penetration factor (transmission coefficient) can 

be determined by solving the Schrödinger equation for a certain optical nuclear potential 

U(r).  This is solved numerically via the radial equation: 

    )()()()1(
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2
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The transmission coefficients can be calculated by  

       
inc

trans

J
J

T =                                      (3.11) 

where J is the current density ( = *)*(
2

φφφφ ∇−∇
rrh

mi
) of the transmitted and incident 

waves.  For the scattering of finite nuclei, the potential (U(r) consists of a Coulomb part: 

VC(r) and a nuclear part: V(r) + iW(r)).  The result of the short ranged nuclear potential 

on the total wave function when r < RN (RN is the nuclear radius) is an extra scattered 

wave besides the wave provided by the Coulomb potential.  When r > RN, the only 

potential is the Coulomb potential (Sections 3.4.1 and 3.4.2). 
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3.3 Optical Potential 

        The interaction of two nuclei is a complicated many body problem which can be  

simplified in the case of elastic scattering through the use of an optical potential.  For 

such a model both particles are considered to be structureless bodies interacting via a  

simple potential.  This potential only depends on the distance between the center of mass  

of both particles U = U(r). 

          The analysis of the experimental scattering data presented in this work is 

performed within the optical model framework.  The optical potential is made up of three 

terms: 

• The Coulomb potential VC 

• The real part of the nuclear potential V 

• The imaginary part of the potential W 

 

                       U(r) = Vc(r) + V(r) + iW(r)                                                     (3.12) 

 

3.3.1 Coulomb potential 

 

         The Coulomb potential is taken to be the potential of a homogeneously charged 

sphere:                                    
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r

eZZrV TPC

2

)( =    for    r  >   (3.13) CR

 

where RC represents the radius of the sphere.  The value adopted for RC has been chosen 

identically with the root-mean-square radius rrms of the double folding potential VF. 

 

 

3.3.2 Nuclear Potential 

 The nuclear potential is responsible for the description of the strong interaction 

between two nuclei.  It is written in a complex form, where a central potential is usually 

considered in the real part.  An imaginary part is needed, as soon as inelastic channels 

(inelastic scattering, particle absorption or transfer reactions) open and might affect the 

elastic interaction channel.  Different parameterizations are usually considered for both 

components of the nuclear potential: 

• Volume Woods-Saxon:  1
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• Fourier-Bessel:  
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where fi(r) = (1 + exp((r-Ri)/ai))-1 are the Woods-Saxon form factors, with Ri = ri · AT
1/3 

and i = V,S. 
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 For the description of elastic scattering, the different parameters in the Woods-

Saxon, Gauss or Fourier-Bessel potentials are adjusted to the experimental data.  In this 

work, volume and surface Woods-Saxon forms were used for the imaginary part of the 

nuclear potential.  While the Fourier-Bessel gives very good agreement at higher 

energies, the oscillatory nature makes the extrapolation down to lower energies useless 

(no diffraction pattern is present in the scattering data).  Ambiguities arise and it’s 

necessary to consider: 

1. Continuous ambiguities: Variations in the geometry parameters of the potentials  
are followed automatically by adjustments in the rest of the geometry parameters, 
resulting in potentials that produce similar scattering phases and an equal 
description of the scattering data [10].   

 
It is possible to reduce continuous ambiguities to a great extent by using a double folding 

parameterization for the real nuclear potential.  The shape of the folding potential is fixed 

while the standard potentials of the Woods-Saxon (WS) type require normalization to its 

geometry form factors. 

2. Singular ambiguities:  Potentials with similar geometry but different depths  
            produce very close results in the description of the elastic scattering data [10].  

The scattering at the lowest energies is determined by the phase shifts, and the pattern of 

phase shifts is largely unchanged if the potential is changed in depth so that the nearest 

bound or resonant state in a given partial wave remains the same distance from threshold.  

If the potential is made deeper, then a bound state would have an extra node.  These 

singular (or discrete) ambiguities give rise to the “family problem”.  This effect was 

previously studied on p-nuclei at low energies [35,36] where the normalization of the 

depth of the real part of the nuclear potential (the strength parameter λ) was 

systematically varied.  The width parameter w and the imaginary geometry terms are 
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adjusted for each fixed value of λ for the best fit.  What results is a continuous variation 

of χ2/F with respect to JR (the strength of the real potential).  The strength is obtained by 

the integral of the potential through the whole space and is usually normalized to the 

number of interacting nucleons AP · AT [10].  Another characteristic of the potential is 

described by its mean square radius rrms.  These two quantities are derived for the real and 

imaginary part of the nuclear potential through the expressions: 
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  The volume integrals of the different components of the nuclear potential are  

negative quantities (the absolute values of JR and JI are used).  Each (local) minimum in 

χ2/F corresponds to one family of the optical potential.  Figure 3.1 shows such a study 

done on 89Y(α,α)89Y [10,37].  The deepest minimum in the χ2/F landscape should 

correspond to the correct family.  In this case, the deepest minima occur for families 

number 3,4, and 5.  The solution to which of these is the correct family can be solved by 

considering elastic scattering data at higher energies (E ≈ 100 MeV [38]) where a linear 

extrapolation of JR is expected (including energies below the Coulomb barrier).  Volume 

integrals of about JR ≈ 330-340 MeV fm3 were obtained for the case of 144Sm(α,α)144Sm 

[35], JR ≈ 340 MeV fm3 for the case of 92Mo(α,α)92Mo [36], and JR ≈ 340-350 MeV fm3  

for 112,124Sn [39].  Further confirmation comes from considering the cluster model.  By 

adjusting the α-nucleus potential to the bound state properties of the nucleus (A+4) = A  
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⊗ α [40,41,42], the potential at energies of astrophysical relevance was determined by 

considering the energy gap between the bound state and scattering potentials (5-12 MeV) 

[43].  This confirmed that the correct description of the strength potential led to values of 

JR ≈ 320-350 MeV fm3.  The volume integrals considered in this study were chosen to 

fall within this range.  

  

 

Figure 3.1  in the study of the different potential families for the reaction 2
redχ

89Y(α,α)89Y at E ≈ 19 MeV. The best description of the experimental cross sections is 
observed for the families 3, 4, and 5 [10]. 

 
 

3.3.3 Double Folding Potential 

 The double folding potential expresses the potential in terms of an effective 

nucleon-nucleon interaction (NN) between the nucleons of the interacting nuclei 

integrated over both their densities.  The folding of the densities of both nuclei and their 

interaction via an effective nucleon-nucleon interaction can be written as: 
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                                   (3.16) AaeffAAaaf rdrdsEvrrrV 33),,()()()( ρρρ∫∫=

The geometry of this parameterization is shown schematically in Figure 3.2. ρa(ra) and 

ρA(rA) represent the charge densities of the projectile a and the target nucleus A.  

The charge densities were obtained from electron scattering experiments [44].  In the 

situation where data was unavailable (e.g., 120Te), a linear extrapolation using the muonic 

+ isotopic data of the other Te isotopes was performed and the density parameters thus  

    

 

 Figure 3.2 Schematic representation of the double folding parameterization [10]. 

 

derived.  In cases where no data was available, a reasonable estimate can be obtained by a 

simple scaling of the radius parameter ~ A1/3 [43].  For all isotopes in this current study, a 

two parameter Fermi (2pF) form was used for the density distribution [44,45].  This form 

follows the relation of the volume WS term.  It has been shown to reproduce the constant 

central region and the diffused edge of the density distribution well.     

  The effective nucleon-nucleon interaction chosen in this work is that developed 

by Satchler and Kobos [46,47] based on a combination of three Yukawa potentials folded 

with the density of both projectile and target nuclei, also called the DDM3Y 
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parameterization.  This description can be separated into two terms, one dependent on the 

distance between both nuclei, the other is a function of density, for a given energy E: 

    ),,(),(),,,( EgEsfEsv AaAaeff ρρρρ ⋅=                             (3.17) 
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is denoted as the Reid-interaction [48], and the weak energy dependence is given by 

                               (3.19) )()005.01(276)(ˆ
00 sEEJ δ⋅−−=

The density dependence of the double folding potential can be parameterized as: 

                                  (3.20) ))(1()(),( )(
,

ρβαρρ E
Aa eEECEg −+⋅=

The variable s in the above equations represents the absolute value of the vector 

 (Figure 3.2).  E is the energy per nucleon, and ρ is the sum of the densities 

of both nuclei at rest ρ = ρ

Aa rrrs rrrr
−+=

a + ρA.  The energy dependence of the coefficients C(E), α(E), 

β(E) can be determined by adjusting the volume integral of the effective nucleon-nucleon 

(NN) interaction veff with realistic calculations of the G-matrix [49].  The G-matrix is a 

scattering operator that allows the transformation of the bare interaction potential into an 

effective one (higher order contributions are now considered – not just one or two body 

terms).  The double folding potential is parameterized as: 

        V(r) = λ Vf (r/w)                              (3.21) 

where λ is a normalization for the strength of the potential.  Typical range of values for λ 

= 1.1-1.4 [40,50,51].   
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     The parameter w modifies the width of the potential.  This accounts for deviations 

between the proton and neutron density distribution within the nucleus.  For stable light 

nuclei with Z = N this parameter is usually not necessary [52].  In the medium and heavy 

mass region, where N/Z ≈ 1.2 for stable nuclei, it is necessary to take this correction into 

consideration [10].  The value of w should remain very close to 1.  A large deviation 

from unity for the stable nuclei, where the neutron and proton densities are very similar, 

would indicate that the nucleon-nucleon interaction is not well chosen [39].  In a first 

order approximation, the protons and neutrons are considered to be equally distributed 

around the nucleus.  In this work, the double folding potential has been calculated [53]. 

 

3.4 Scattering Theory  

   Elastic scattering is one of the simplest nuclear reactions between a projectile 

and a target.  Despite this, elastic scattering has been an important source of information 

on nuclear properties.  This information comes primarily through the interaction 

potential.  The many body problem that exists is simplified through the introduction of a 

potential.  Such a potential is the complex optical model.  The real part accounts for the 

elastic scattering and the imaginary part accounts for the sum of all contributions of non-

elastic channels (reaction cross section).  Below the threshold energy of the lowest non-

elastic channel the flux is absorbed into compound-elastic scattering and at higher 

energies, the absorption goes into non-elastic reaction channels.  The following 

derivation is from [10, 54].   
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   The elastic scattering process between a projectile a and a target nucleus A can 

be described by finding a solution of the Schrödinger equation: 

       )()()(
2

][ 2
2

rErrV rrrh
Ψ=Ψ+∇⋅−

μ
              (3.22)       

where μ represents the reduced mass of the system.  The potential V( rr ) is composed of a 

Coulomb and a complex nuclear potential.  The wave function Ψ( rr ) is a sum of the  

incoming plane wave and the outgoing spherical wave 

    )( )exp(),()exp()( 0 r
ikrfrkiAr φθ+⋅=Ψ

rrr                                   (3.23) 

where f(θ,φ) is the scattering amplitude and k
r

 the wave number of the incoming wave.  

The density of the emitted particles is given by the square of the wave function in 

equation 3.23, integrated over all internal degrees of freedom: 

     2

2

2
0 ),( φθρ f

r
A

=                           (3.24) 

An expression for the differential scattering cross section, defined as the number of  

particles emitted per solid angle dΩ divided by the incident flux of particles per unit time,  

is given as: 

                                           2),( φθσ f
d
d

=
Ω

                                                               (3.25) 

 

3.4.1 Elastic scattering on a nuclear potential 

   When considering a spherically symmetric potential, the angular momentum of 

the system is a constant of the motion.  In this way the wave function can be factored into  
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a radial and angular part: 

                                                                                              (3.26) ),()()( φθχ m
lllm Yrur =

r

Likewise, the Schrödinger equation can be separated into a radial and angular form. 

The radial equation takes the form: 

                   lll Eww
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where the term 2
)1(

2

2

r

ll +
⋅

μ

h   represents the centrifugal barrier of a particle moving in an 

orbit with angular momentum l . h

      The scattering process can be understood as the interaction of several partial wave 

functions with angular momentum l with the central potential.  Only those particles with 

angular momentum l  relative to the target less than a maximum value will interact 

effectively with the target nucleus.     

h

     For the elastic scattering case, the asymptotic limit leads to an approximation of 

equation 3.26 

                   )(exp),()exp(),,(
r

ikrfrkir φθφθχ +→
rr                                                  (3.28) 

Assume that the particles do not have any intrinsic spins, so that the total angular 

momentum is just the orbital angular momentum l.  Adopting k along the z axis, it is 

possible to express the scattering amplitude of a nuclear potential as follows: 

                          [ ] )(cos1)12(
2
1),( θφθ l

l

l PSl
ik
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where Pl(cosθ) are the Legendre polynomials, and S represents the unitary scattering 

matrix which is expressed in terms of the reflection coefficients ηl and the scattering 

phase shifts δl.   

                                                                                                      (3.30) )2exp( ll
l iS δη=

The reflection coefficients ηl represent the amplitude attenuation of the l-th partial wave.  

For a real potential, no attenuation is expected, since ηl = 1 (for complex potentials, 

ηl < 1).  The scattering phase shifts δl correspond to the angular shift experienced by the 

l-th partial wave compared to an undisturbed wave.  Anattractive potential (V < 0) leads 

 to a positive phase shift, whereas a repulsive potential(V > 0) produces a negative phase 

 shift.  In the absence of a nuclear potential, all phase shifts vanish.   

 

3.4.2  Elastic scattering on a Coulomb field 

     The existence of an electromagnetic interaction between two interacting 

particles requires the adoption of an extra term for the wave function, which 

asymptotically takes the form: 

                        )]2ln(exp[1)( krikr
r

rkC ηχ −→
rr                                                    (3.31) 

with a phase shift relative to an undisturbed wave which depends logarithmically on the 

distance r, the Sommerfeld parameter η, defined in equation 2.2.  Taking into account the 

above correction, the wave function of equation 3.26 has the form: 

 ),,(),(),,( φθχθχφθχ rrr NC +→  
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     ))]2ln((exp[1)),()(( krnkri
r

ff NC −+→ φθθ                                               (3.32) 

The amplitude  incorporates all possible interactions but the electromagnetic.  The  Nf

Rutherford scattering amplitude is written as: 

 )]2))2/(ln(sin(exp[
)2/(sin2 0

2
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θ
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whereas the scattering amplitude of the nuclear interaction is given by  
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The Coulomb phase shift lσ , which contains the effect of the electromagnetic interaction  

on the scattering amplitude ),( φθNf , is given by the expression 

                                     )1( ησ ill ++Γ=     (3.35) 

Considering both the effects of the electromagnetic and nuclear interactions, the total 

scattering amplitude of a projectile on a target nucleus A is expressed in the form 

                   2),()(),( φθθφθσ
NC ff

d
d

+=
Ω

                                (3.36) 
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CHAPTER 4  

ACTIVATION EXPERIMENTS 

 
 

4.1 Overview 

      In some cases, the cross section of γ-induced reactions can be measured by 

photodissociation experiments; however, reproduction of the thermal photon bath is 

experimentally challenging [55,56,57].  Generally, it is the inverse capture reaction that is 

measured.  Detecting the prompt γ’s of the capture reaction is exceedingly difficult due to 

the low cross sections at energies of astrophysical interest.  The beam induced 

background usually swamps the γ-ray of interest; hence, for capture reactions on p-nuclei, 

the cross section is generally determined via the activation technique.  This involves 

bombarding a stable target with a charged particle beam (in the case of α- or p-) thereby 

producing a radioactive species.  If the lifetime of the residual radioactivity is long 

enough (between minutes and hours), the radioactive product can then be measured 

offline. 

   Due to the very low natural abundances of p-nuclei, enriched targets are 

generally necessary for p-process measurements.  While several (p,γ) measurements have  
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been made using natural targets [58,59,60,61,62],  the situation for α-capture is different   

(due to the very low cross sections).  The degree of enrichment needed depends greatly 

on the cross section (how small it is) and also on the decay scheme of the radioactive 

nucleus produced (how complicated it is).  Competing reactions can produce γ-transitions 

very close in energy to or with cross sections of the same order of (or greater than) the 

one of interest.  In these cases, a very high enrichment is needed to improve the peak-to-

background ratio.       

   The aim of this experiment was the measurement of the α-capture cross section 

on  106Cd.  Based on Hauser-Feshbach predictions for the reaction rate, the p-process 

branching point at which the (γ,α) and (γ,p) reactions become competitive with the (γ,n) 

process along the Z=50 chain is located at mass number 110-112 (Figure 4.1) [64]. 

 

 

 

 

Figure 4.1 The p-process reaction flow in the Cd-Sn region. For simplicity, only even-
even isotopes are shown, hence the (γ,n) arrow indicates two subsequent neutron 
emissions. Stable isotopes are indicated by bold squares. The solid arrows show the main 
reaction flow path, whereas dashed arrows indicate weaker branchings [63,64]. 
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This reaction is particularly important because it focuses on the photodisintegration of a  

closed proton shell (Z=50).  Near closed shells the level density is reduced and the 

statistical model may not be fully applicable (this is particularly true for neutron magic  

numbers due to their wider level spacing) [64].  In addition to 110Sn, the reaction products 

of 106Cd(α,n)109Sn and 106Cd(α,p)109In are also radioactive.  The reaction product of 

106Cd(α,p)109In is the same as the daughter of 109Sn from the 106Cd(α,n)109Sn reaction 

(Figure 4.2).   

 

Figure 4.2: The α-induced reactions on 106Cd and the decay of the reaction products [64].  

 

Above the (α,n) threshold (Eα = 10.53 MeV), the (α,n) channel rapidly becomes stronger 

than the (α,p) reaction; therefore, the 106Cd(α,p)109In cross section is determined only 

below the (α,n) threshold.   

       The experiment was performed independently at Notre Dame and at Atomki, 

Hungary [64].  The experiments overlapped at certain energies and therefore allow for the 

detection of any hidden systematic error.  Since there is little α-capture data on p-nuclei, 
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this increases the reliability of the measurements.  The experiment performed at Notre 

Dame will be presented [64]. 

       For the 106Cd(α,n)109Sn reaction, no results were obtained from the Notre  

Dame data.  Due to the very complicated decay scheme and the absence of dominant γ-

ray transitions, the close geometry of the counting set-up (Section 4.1.5) would have 

required significant summing corrections leading to large uncertainties [64].   

     In addition to the α-capture cross section of 106Cd, 120Te(α,n)123Xe was also 

measured (at Notre Dame only).  Since 120Te(α,γ) produces 124Xe (a stable product), it is 

not possible to measure this reaction via the activation technique.  Information about the 

behavior of the α-optical potential can also be obtained by measuring the (α,n) and (α,p) 

channels.  While 120Te(α,p) produces a radioactive species (123I), the main γ-ray transition 

(159 keV) has feeding from the (α,n) reaction.   

 

4.1.1 Beamline set-up 

    Figure 4.3 shows the experimental set-up for the irradiations.  The first figure 

shows the target chamber for the 106Cd activations while the second is that of 120Te.  The 

entire target chamber was isolated from the beam line and acted as a Faraday cup.   

Secondary electrons from the target were suppressed by a bias voltage of -300 V.   

     Due to the relatively low melting point of the 106Cd targets (321°C), they were  

placed in a brass holder which was air cooled.  A thick carbon disc was placed directly  

behind the target to stop the beam.  The beam spot for the 106Cd and the 120Te  
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irradiations was defined by using a 5 mm collimator at the target position.   

     For the 106Cd+α activations, the beam current was recorded in real time with a  

current integrator in time steps of 32s, allowing fluctuations in the beam to be monitored.  

For the 120Te(α,n) irradiations, the current was recorded in time steps of 10s.  

 

 

 

 

 

Figure 4.3 A collimated Si surface barrier detector was mounted at 135° with respect to 
the beam axis to monitor the stability of the target [65,66].  
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4.1.2 Enriched 106Cd and 120Te targets 

       Highly enriched (86.4%) 106Cd targets were prepared via mechanical rolling at 

Argonne National Laboratory.  They were self supporting targets with thicknesses of 2.3 

mg/cm2 (determined by weighing).  The thicknesses were also measured by the 

Rutherford backscattered (RBS) approach and turned out to be 2.1 ± 0.2 mg/cm2. The Cd  

foils were mounted on Ta frames with apertures of diameters of 12.5 mm.   

       Highly enriched 120Te oxide targets (99.4%) were prepared by resistive 

heating at the University of Notre Dame.  The material was evaporated onto 1.5 mg/cm2 

thick Al foil and then placed on 1 cm diameter hole Ta target frames.  The target 

thicknesses were on the order of 1 mg/cm2.   

       The target thicknesses were continuously monitored during the experiments 

by RBS (Figure 4.3).  The measurements showed the targets were stable.  Tests done with 

natural targets prior to the experiment showed that there was no deterioration with α- 

beams up to 250enA. 

 

4.1.3 Counting Set-up 

    The irradiated targets were measured using a pair of Clover detectors placed 

face to face in close geometry (5 mm distance from face to face).  The set-up is shown in 

Figure 4.4.  Each clover detector consists of four individual crystals with a relative 

efficiency of 20%.  The detectors were shielded by 5 cm of lead against room background 

and an inner Cu lining of 3 mm (Figure 4.5).  A plastic holder joined the faces of the two 

detectors such that the target could slide into the exact center.     
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     . 

Figure 4.4 Two clover detectors placed in close geometry to measure offline γ-activity 

 

 

 

Figure 4.5 Schematic view of the inside of the clover counting set-up.  The Pb is lined 
with 3 mm Cu plates [65]. 
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4.1.4 Electronics 

   In addition to detecting the produced radioactivity offline for cross section 

calculations, the half-life of 110Sn was also measured.  This necessitates an accurate dead 

time estimate.  This is complicated at higher energies where the count rates are high and 

varying; therefore, in addition to the acquisition dead time, the dead time in the 

electronics chain must be taken into account.  Since each of the eight crystals was 

considered as one “detector” operated in direct mode [67], the γ-ray energy is detected in 

each crystal event-by-event.   

  The real time was produced by a fixed frequency generator (“oscillator” in Fig. 

4.6).  Two signals are produced.  One sends a pulse every 8s for real time and the other is 

fed into one of the Ge amplifiers for dead time monitoring.  Since the detector output 

contains both the actual detected signal and the produced pulse signal, one bit of the  

register module (NIM interrupt) was used every time a pulser signal was created [68].  

Separate spectra can then be created for real and pulser events.  The ratio of these gives 

the total live time of the system:        

   Pulser in Live Trigger / Pulser = 1 – τ 

where τ is the total dead time of the detection system [68] (Figure 4.6).   
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4.1.5  Efficiency Determination 

   The absolute photopeak efficiencies of the detectors were determined 

using calibrated 54Mn, 60Co and 133Ba sources and the energy range extended by also 

using an uncalibrated 152Eu source of unknown activity.  Two separate methods were 

used to calculate the efficiency.  The first was the standard method involving the decay 

branching ratios and the activities of the sources.  Due to the high counting efficiency, 

summing corrections had to be taken into account.  When defining efficiency, a 

distinction must be made between the total efficiency εt and the photopeak efficiency ε.  

The photopeak efficiency is defined as the count rate (number of counts in the peak 

divided by the measuring time) in the peak corresponding to the energy E divided by the 

rate at which photons are emitted from the source.  The total efficiency, on the other 

hand, is the ratio of the number of pulses recorded in the spectrum and the number of 

photons emitted from the source [69].  Both follow the same mathematical relation: 

       
γ

ε
BA

Nt

⋅
=                                         (4.7) 

where Nt is the counting rate, A is the activity of the source and BBγ is the branching ratio 

of the particular gamma cascade of interest.  If the source-detector distance is small (as 

was in our set-up), then Nt is significantly affected by coincidence summing.  This effect 

occurs when the source emits two or more photons in sequence within the resolving time 

of the detector [69].  The 8 crystals were operated in “direct-mode” (each crystal is 

considered independently as a single detector).  If two coincident photons are detected in 

the same crystal, then a sum pulse is seen which leads to the loss of events in the  
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photopeak of interest.  This is referred to as “summing-out”.  Summing corrections can 

be calculated by considering the probability of detecting other photons, emitted 

simultaneously by the decaying nucleus.  A detailed calculation is given in Appendix B.  

Tables currently exist for calculating cascade-summing corrections in gamma-ray 

spectroscopy [70] for standard radioactive sources.  Nt is then multiplied by this 

correction to obtain the counting rate without summing (see Appendix B).  The 

corrections used in the tables given by [70] also include the total efficiency as an input.  

The total efficiency was obtained numerically by considering the source-detector 

distance, the thickness of any absorbers between source and crystal face, and the 

dimensions of the crystal.   It was obtained from 50 keV to 2 MeV.  The monoenergetic 

source 54Mn was used as a calibration to normalize the calculated total efficiency curve to 

our particular set-up.  By using this and the photopeak efficiencies of 133Ba and 60Co, the 

correction factors were calculated from the equations in Appendix B and the photopeak 

efficiency from 100 keV to 1.5 MeV was obtained. 

   A second method was used to obtain the photopeak efficiencies [71].  This 

method has the advantage of allowing the efficiency to be determined without knowledge 

of the activity of the source.  A 152Eu source of unknown activity was used as a check of 

the previous method.  152Eu has a complicated decay scheme (see Appendix B); however, 

73% of the time 152Eu β- decays to 152Gd.  For the 779-344 keV transition, the efficiency 

at 779 keV can be determined by: 

        
..)(344

)344779()779(
RBall

coin
⋅

−
=ε                           (4.8) 
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A gate is made on one crystal in clover #1 around the 344 keV region and the 4 crystals 

in clover #2 are checked for the 779 keV coincidences.  This then is divided by the 

singles spectra of 344 keV of all 8 crystals times the branching ratio (B.R.) of this 

particular cascade.  The photopeak efficiency of 779 keV is then the sum of the result 

from clover 1 and clover 2.  In this particular method, the photopeak efficiency of 779 

keV was computed to be 9.51% ± 0.036%.  If we compare it to the value obtained by the 

first method, we get 9.55% ± 0.18%.  Both methods agree within the uncertainties (see 

Appendix B).  For 280.5 keV (the gamma ray of interest for the 106Cd(α,γ)112Sn reaction), 

the photopeak efficiency had a value of 22.3 +/- 0.5%.  Figure 4.7 shows the photopeak 

efficiency obtained from 152Eu plotted on a log-log scale.    

 

 

Figure 4.7 Photopeak efficiency determined from 152Eu. 
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4.2 Activations 

 The peak of the Gamow window for 106Cd(α,γ)110Sn at a p-process temperature of 

T9 = 3.0 is located at 7.21 MeV; its width is about 4 MeV.  The lowest energy reached in 

the experiment was Ec.m. = 7.56 (well within the Gamow window).  The measurements 

extended up to 12.06 MeV to probe the reliability of the Hauser-Feshbach predictions 

over a wider energy range [64].  The activations at Notre Dame were carried out at beam 

energies between 7.0 and 12.0 MeV.  Data below 8 MeV couldn’t be obtained because of 

a strong Compton background caused by a γ line (Eγ = 373 keV) from the reaction of 

40Ca(α,p)43Sc that overwhelmed the 280.5 keV γ-line of interest (see Figure 4.8) [64].   
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Figure 4.8  The 106Cd(α,γ)110Sn reaction at the lowest measured energy. 
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Figure 4.9 The 106Cd + α reactions that are open at Elab = 11.5 MeV. 

 

40Ca is a common contaminant that has a much lower Coulomb barrier than that of 106Cd 

and the half-life of 43Sc is comparable to that of 110In [64].  Due to the larger Coulomb 

barrier, the 106Cd+α cross sections drop much faster than that of the 40Ca+α reaction at  

lower beam energies (Figure 4.9) [64].   
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  The 120Te(α,n)123Xe reaction channel opens above 10 MeV; therefore, the 

cross section was measured at a lab energy of 10.5 and 11 MeV.  Figure 4.10 shows the 

activation spectrum of 120Te(α,n)123Xe at Elab = 10.5 MeV.  During an activation, the 

optimum production rate is reached at about 2-3 half-lives, therefore, the counting time 

for the decay of the produced radioactivity was 2 half-lives (Table 4.1). 
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Figure 4.10 Activation spectrum of 120Te(α,n)123Xe at Elab = 10.5 MeV. 
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TABLE 4.1  

DECAY PARAMETERS OF 106Cd+α REACTION PRODUCTS AND OF 

120Te(α,n)123Xe 

 

     The new half-life of 110Sn [72] was used in the determination of the cross section.  
 

 

4.2.1 Cross Section calculation 

      In addition to allowing for the removal of beam induced background, 

measuring the radioactive target offline allows for an optimization of the detector set-up.  

Figure 4.11 shows the decay scheme of the radioactive product from the reaction of 

106Cd(α,γ)110Sn.  In this case, the scheme is simple and there is only one γ-ray (no 

summing corrections need to be considered). 
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  The decay scheme for 120Te(α,n)123Xe is much more complicated.  123Xe decays 

100% of the time to 123I.  Although 123I produces many γ-lines, there are two dominant 

ones at 149 keV (48.9%) and at 178 keV (14.9%) (Figure 4.12)  

 

 

Figure 4.11 Decay scheme for 106Cd(α,γ)110Sn  

 

     

 

Figure 4.12 Simplified decay scheme of the 120Te(α,n)123Xe reaction (the two dominant 
γ-transitions used in the analysis are shown). 
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The number of radioactive nuclei (after the irradiation), Nirr, is: 

                              (4.1) dtetIEnN
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where I(t) is the particle current of the incident beam, nt is the target density in       

nuclei/cm2, τ is the lifetime of the nuclei created, and tirr is the duration of the irradiation.   

The counting time happens from a period starting at t1 after the irradiation until a time t2.  

The above integral can be expressed as 
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where Δt represents the time duration of each channel, i is a summing index, ne is the 

charge state, Qi is the integrated charge (per channel) and Nch is the number of channels 

of the beam collection (each lasting Δt seconds).  The number of decays that will occur 

during this counting time, Ndecay, including those possible from Nleft undecayed nuclei 

from previous irradiations that remain at the end of the new irradiation, will be  

   ))(exp1)(exp()( ][ 121

ττ
tttNNN leftirrdecay

−−
−

−
+=                   (4.3) 

Assuming a previously irradiated target has no residual radioactivity before being 

irradiated again, then Nleft = 0 and the above equation becomes: 

     ))(exp1)(exp( ][ 121

ττ
tttNN irrdecay

−−
−

−
=                               (4.4)     

The photopeaks observed in the resulting spectra (Ndecay) are a function of the detection 

efficiency (ε), the number of counts per γ-line (Nγ), summing corrections (Sc), correction 
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for γ-self absorption in target (Kabs), and the branching ratio of the particular γ-line of 

interest (Iγ): 

   
γγ

γ

εI
KSN

N absc
decay =                                 (4.5) 

Combining equations 4.2, 4.4, and 4.5, allows for the determination of the cross section: 
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where the units are cm2.   

  The correction for γ-self absorption (Kabs) in the target is negligible for our   

target thicknesses.  SC is equal to one for the 106Cd(α,γ)110Sn reaction since only one γ-

transition occurs (see Figure 4.11).  Summing corrections had to be taken into account for 

the decay of the radioactive product of 106Cd(α,p) and 120Xe(α,n) since several γ’s were 

emitted in that decay (Figures 4.12 and 4.13).  The branching ratio (Iγ) is taken from 

literature [75] and the rest are experimentally determined quantities to be discussed in the 

following sections. 
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Figure 4.13 Simplified decay scheme of 106Cd(α,p)109In. 

 

4.3 Results 

       The cross sections and S-factors for the reactions 106Cd(α,γ)110Sn, 

106Cd(α,p)109In, and 120Te(α,n)123Xe are listed in Tables 4.2, 4.3, and 4.4.  The second 

column shows the effective center-of-mass energies.  The error associated with this arises 

from the uncertainty in the calculation.  The error of the Notre Dame cross section (S-

factor) values is the quadratic sum of the following partial errors: detector efficiency 

(2.3%), number of target atoms (target thickness) (9%), current measurements (3%), 

uncertainty of the level parameters found in literature ( ≤  12%), and counting statistics  
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(0.17-14%) [64].  For the ATOMKI measurement, the quoted errors of the energies 

include the energy loss in the targets calculated with the SRIM code [76], the energy 

stability of the cyclotron and the energy straggling in the degrader foil where it was 

applied [64]. 
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TABLE 4.2 

CROSS SECTION AND S-FACTOR OF 106Cd(α,γ)110Sn  

 

 

               a: energy degrader foil, b: natural Cd target, *: Atomki target [64].  
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TABLE 4.3  

CROSS SECTION AND S-FACTOR OF 106Cd(α,p)109In 

 

 

 

                 a: energy degrader foil, *:Atomki target [64]. 
 

TABLE 4.4 

CROSS SECTION AND S-FACTOR OF 120Te(α,n)123Xe 

 
 
 

The first set of values is that obtained using the 149 keV γ-transition while the second is 
from the 178 keV transition.  
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To test for systematic uncertainties, the 106Cd(α,γ)110Sn cross section was measured at 

Notre Dame at the same beam energy (10 MeV) using an ATOMKI target.  The value 

obtained for the cross section of the ATOMKI target at Notre Dame at a beam energy of 

10 MeV is 75.1  5.4 μb.  In comparison, the value obtained at the same beam energy 

with an identical target thickness at the ATMOKI set-up yields a value of 79.1  8.2 μb.  

The results agree within the errors. 

±

±

  Figures 4.13, 4.14, and 4.15 show a comparison of the experimental 

results to the Hauser-Feshbach statistical model cross sections [77] obtained with the 

standard settings of NON-SMOKER [77,78,79].  The predicted cross sections are too low 

in the case of the (α,p) reaction.  In the case of the (α,γ) data, there is a discrepancy of a 

factor of 5 in cross section at the lowest energy while at the higher energies the 

discrepancy is on the order of 2.2.  For the 120Te(α,n)123Xe data, there is a 1.4 

overestimation of theory to data in cross section for the lowest energy point; however, 

there is a three order of magnitude overestimation in S-factor.  The comparison of data to 

theory will be further addressed in Chapter 6.  
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Figure 4.14 Cross Section and S-factor of 106Cd(α,γ)110Sn  
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Figure 4.15 Cross Section and S-factor of 106Cd(α,p)109In 
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Figure 4.16 Cross Section and S-factor of 120Te(α,n)123Xe.  Results using the 149 keV γ-
transition are shown. 
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CHAPTER 5  

ELASTIC SCATTERING EXPERIMENTS 

 

5.1  α-scattering on p-nuclei 

      In addition to measuring α-capture cross sections of p-nuclei (which allow a 

direct comparison of theory to experiment), a sensitive probe of the global 

parameterizations used within the statistical model, namely the global α-nucleus 

potentials, can be achieved via elastic scattering experiments.  

      To date, the behavior of the α-nucleus potential at energies below the 

Coulomb barrier is not well understood.  While elastic scattering allows the 

determination of local potentials, certain constraints must be taken into account.  One 

large experimental deterrent is the enrichment of the p-nucleus.  While α-capture 

experiments can sometimes be achieved with lower enrichment, an enrichment of 90% is 

needed for elastic scattering experiments (for the closeness in masses of the scattered 

particles).  Table 5.1 shows the natural abundances of the isotopes used in the 

measurement and their percent enrichment (106Cd and 120Te are the p-nuclei). 
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TABLE 5.1  

ENRICHMENT 

 

The isotopes with their corresponding natural abundance and the degree of enrichment 
used.  Note the very low natural abundance of 120Te. 
 

 

In addition, the angular distribution in the full angular range with high precision has to be 

determined in order to reliably extract the nuclear potentials.  Below the Coulomb barrier, 

the cross section is dominated by the electromagnetic interaction and it is difficult to 

derive the potential unambiguously.  While the potential can be uniquely determined at 

high energies ( ≥  100 MeV [38]), we are interested in astrophysical energies which are 

well below the barrier.   

 The real part of the nuclear potential can be fairly well determined (below the 

barrier) [43,80] but there is a very strong energy dependence of the imaginary part of the 

nuclear potential below the barrier [43].  In fact, it has been shown that transmission 

coefficients in statistical model calculations depend sensitively on the volume integral JI 

and also on the shape of the imaginary part of the potential [80].  All of these issues must 

be considered when performing experiments on p-nuclei.  In this case, a compromise has 
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to be reached.  It is necessary to go above the barrier in order to extract nuclear properties 

but it is necessary to also measure below in order to ensure that the extrapolation down to 

sub-barrier energies (in particular within the Gamow window) will be as accurate as 

possible.   

     In the current study, the mass and energy dependence of the α-nucleus potential 

is probed by elastic scattering on the p-nucleus 120Te and its neutron richer counterparts 

124,126,128,130Te at 17, 19 (Coulomb barrier), 22, 24.5 (120,124,128Te only) and 27 MeV 

(120,124,128,130Te).  In addition, the charge dependence is also tested via scattering on 118Sn.  

To test for any hidden systematic errors of different experimental set-ups, 106Cd was 

remeasured [81] and extended to higher energies.     

 

5.1.1  Enriched 120,124,126,128,130Te, 118Sn and 106Cd targets 

 
 In order to ensure a clear identification of the elastically scattered α-particles, 

relatively thin targets (between 100-300 μg/cm2) are used; however, a too thin target 

decreases the yield so it is important to balance the two.  Another problem that can arise 

is if the material has a low melting point.  Both metallic Te (450° C) and Te oxide (733° 

C) targets were used.  When exposed to particle beam, self-supporting metallic Te targets 

degrade quickly [82].  Hence, the targets are evaporated onto C backings to help with 

heat conduction.  Evaporated metallic and oxide Te targets were prepared at Argonne 

National Lab by vacuum deposition from a resistively heated source boat [83].  The 106Cd 

targets (metallic) were prepared by electron gun by Micromatter and the thicknesses were  
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270 μg/cm2.  The 118Sn oxide targets were also evaporated onto C backings and were  

prepared at Notre Dame by resistive heating.  The thicknesses of the Sn oxide targets 

were 145 and 170 μg/cm2 (see Appendix A).  Target tests prior to experiment showed that 

the oxide targets could withstand currents of up to 300 enA without deterioration while 

for the metallic targets it was up to 150enA.     

 

5.1.2 Detection System 

 Thirty two Si pin diode detectors (500 μm thicknesses and an active area of 9x9 

mm) were placed in the 1.6 m diameter scattering chamber.  The detectors were mounted 

on a rotatable table that consisted of 100° arcs attached to a supporting frame (see Figure 

5.1).  Thirty detectors were placed on the rotatable table allowing for the complete 

angular range from 22° to 168° in 2.5° increments.  The detectors were placed at a 

distance of 25.3’’ from the target while two monitor detectors were fixed at a distance of 

25.71’’ and placed at 15° on either side of the beam axis.  In order to avoid very high 

counting rates and to achieve a high angular resolution, different collimators were placed 

in front of the detectors.  The solid angle covered by the monitor detectors was ΔΩΜ ≈ 

1x10-5sr each while for the other rotatable detectors it was ΔΩall ≈ 8x10-5sr each. 
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M1 
 

Figure 5.1 Inside view of the scattering chamber.  The left view shows the Si pin diode 
detectors mounted on a rotatable table and the two fixed monitor detectors.  The right 
view shows the moveable (both transitional and rotational) target ladder.  

 

  Three different angular spans were used for each isotope for each energy.  The 

most forward orientation covered the angular range from 22.5° to 95° while the second 

spanned from 32.5° to 105° and the backward range covered from 95° to 167.5° in 2.5° 

increments (Figure 5.2). The angular position of each detector was known to 0.01° 

accuracy.  The angles were determined by aligning the left and right edge of each  

collimator with a telescope placed at 0° outside the chamber.  The exact center of the 

detector was determined in this way.  An electronic and mechanical reading outside of  
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Figure 5.2 Forward (left) and Backward (right) orientations of the detectors and targets. 

 

the chamber verified that the position of the exact center of each detector could be  

reproduced to an accuracy of 0.01°. 

    The charge was integrated via a Faraday cup that was located on the beamline 

after the scattering chamber that was electrically insulated from the chamber itself.  Prior 

to each energy change, the beam was tuned through a 2 mm diameter collimator on the 

target position to ensure a small and well tuned beam spot.   

 

5.1.3 Electronics 

     Thirty-two Si pin diode detectors were biased at +90V.  Two high density 

charge sensitive preamplifier boxes (each capable of taking 16 channels) were supplied 

with +/-12V in addition to the bias voltage input (supplied by a Tennelec 953 dual 

HVPS).  The preamp signals were then fed into Caen (model N568 LC) amplifiers.  From 

here, the shaped energy signals are readout by the Camac (v785) ADC and the timing 

signals are sent to the Oct. CF discriminator for further processing and trigger 

construction.  The deadtime was constructed by taking the ratio of the livetrigger over the 
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trigger (any event from the 32 detectors).  Beam current was limited so that the two 

monitor detectors had countrates not exceeding 3K.  Figure 5.3 shows the electronics set-

up in detail.     

 

5.1.4 Solid Angle Determination 

           High precision solid angle determination is one of the most important ways to 

reduce systematic error.  In the very forward angles (50° and below for 17 MeV and 35° 

and below for 27 MeV), the largest source of error comes from systematic error due to 

the solid angle determination.  Three independent methods were used to measure the 

solid angle.  An error of only 1% was achieved.  The first method was done previous to 

the start of the experiment.  Each of the 32 collimators were placed directly in front of a 

Si barrier detector and a calibrated alpha source was positioned at a distance of 3.432’’ 

from the detector in a small chamber.  The solid angle is given by: 

                             Ω = Area/d2                                              (5.3) 

The solid angle (Ω) can be determined by dividing the observed number of decays/sec 

from the α-source by its activity.  Since d is known (the distance of the source to the 

collimator), the exact dimension of the collimator can be obtained.   
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     A second method was done post experiment in the scattering chamber by 

placing an alpha source in the target ladder position and by the same method as above 

(and positioning the detectors in the forward running position), the solid angle was again 

measured.  A comparison of the two previous methods shows a 1% error arising from the 

collimator diameter (Figure 5.4) 

 

0.95

0.97

0.99

1.01

1.03

1.05

0 5 10 15 20 25 30 35

Collimator #

Di
am

of
fli

ne
/D

ia
m

on
lin

e

 

Figure 5.4 Ratio of the diameters of the collimators obtained from the offline method 
versus the online method (1st two methods).  A deviation of 1% is obtained.   

 

The solid angle obtained from the measurement post experiment in the scattering 

chamber was used in the cross section calculation.   

  The last method was performed during the experiment by overlapping angles.  

That is, in different orientations, the same angle is measured twice for certain detectors.  
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This is a way to double check the solid angle determination for specific detectors during 

the experiment.       

 
 

5.2 Data Analysis 

  The experimental quantity of interest in the calculation of the cross section is the 

elastic α-peak.  Figure 5.5 shows the most forward (22.59°) angle and lowest energy (17 

MeV) and the most backward angle (165.8°) and highest energy (27 MeV) for the α-

particles scattered from 120Te.  At the highest energy, the first two excited states of 120Te 

are reached.   
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Figure 5.5 Spectra of 120Te at the highest energy and most backward angle and lowest 
energy and most forward angle. 
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The experimental elastic cross section can be calculated via: 

                
ΔΩΔ
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Ω
σ

xN
)(N)(
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⎠
⎞

⎜
⎝
⎛                                (5.1) 

where )(ϑN represents the number of elastically scattered α particles at the angleϑ  in the 

lab frame.    The number of incoming α particles is denoted by NProj, whereas Δx is the 

total number of target atoms per unit area.  The solid angle covered by the detector is ΔΩ. 

   In order to achieve accuracy in the cross section measurement, the factors of 

equation 5.1 must be measured precisely.  Possible inhomogeneities of the target 

thickness may result in large uncertainties for the quantity Δx.  A way to avoid this 

problem is to normalize the cross section relative to the cross section measured by the 

monitor detectors at ϑ lab = 15°, which is described by the Rutherford scattering formula 

[10,36,51]: 
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NM(ϑ  = 15°) corresponds in this case to the number of elastically scattered α particles at 

15° and ΔΩM represents the solid angle of the monitor detectors.  The cross section can 

then be calculated from the experimental data without systematic uncertainties arising 

from the target.  A precise determination of the angles at which the detectors are placed 

with respect to the target position is essential for an accurate calculation of the cross 

section (described in section 5.1.2).  The error in the cross section is a sum in quadrature 

of two sources of error: statistical error that dominates at larger angles and higher 

energies while systematic error in the form of the solid angle of a value of 1% that 

dominates in most cases at the very forward angles.  The total error in cross section at the 
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most backward angle at the highest energies for most isotopes was on the order of  6-8 % 

(due to statistical error) while at the very forward angles it was 1% (systematic error).   

Since there were three different angular running orientations, it was at times necessary to 

combine cross sections from different runs.  Each run had to be normalized to the monitor 

detectors to take into account deviations (Section 5.2.2).  It was therefore necessary to 

combine cross sections by normalizing each data set to its own monitor detectors and 

combining cross sections of overlapping angles thusly.  Figure 5.6 shows the normalized 

cross sections of 106Cd and 120Te (p-nuclei) at all measured energies.  Appendix C lists 

the normalized experimental cross sections of all the isotopes from this study. 
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Figure 5.6 Normalized cross sections of 106Cd(α,α)106Cd and 120Te(α,α)120Te at all 
measured energies. 
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CHAPTER 6  

RESULTS AND CONCLUSIONS 

 

6.1 α-nucleus potentials 

      A global α-nucleus potential is one calculated from α-elastic scattering data 

over a very wide range of energies and masses.  It should be able to provide a general 

description of the elastic scattering processes (at all energies and masses).  A local 

potential is derived from α-elastic scattering data off of one isotope (and over a much 

narrower energy range).  

      This current study aims to test the mass (both neutron number and charge) and 

energy dependence of the α-nucleus potential by α-elastic scattering on 106Cd (p-

nucleus), 118Sn, 120Te (p-nucleus), 124Te, 126Te, 128Te, and 130Te.  Of particular importance 

is 106Cd since it is a remeasurement [10,81] to test for any systematic error arising  

from the different experimental set-ups.  Table 6.1 shows the nuclear properties of the 

nuclei considered in this investigation.   
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TABLE 6.1  

NUCLEAR PROPERTIES OF THE NUCLEI FROM THIS STUDY 

 

. 

      In order to correctly predict cross sections and reaction rates for particle capture 

and emission reactions involving α-particles in the framework of the HF model, it is 

necessary to construct a reliable α-nucleus potential.  The following global models were 

used in comparison to the scattering data from this work: 

• In the middle of the sixties, McFadden and Satchler [86] analyzed the 
angular distribution of elastically scattered 24.7 MeV α-particles on several 
elements from Oxygen to Uranium, and proposed a global parameterization 
based on a four-parameter volume Woods –Saxon (WS) potential.  It 
includes a volume WS form in the real and imaginary part where the (real 
and imaginary) radius and surface diffuseness are identical.  In addition, 
there is no energy or mass dependence to the WS geometry parameters.  This 
global potential is considered the standard potential.   

• M.Avrigeanu et al. [87] extended a previous study by Nolte et al. [88] (α-
elastic scattering on 12C, 40Ca, 50Ti, 58Ni, 90Zr and 208Pb) at energies above 80       
MeV to the lower energy region (E ≤ 32) for the description of (α,n)           
reactions (from 89Y to 124Sn), and its possible application to astrophysical        
scenarios.  A volume Woods-Saxon (WS) form adopted in the real part of the      
nuclear potential is accompanied by a sum of volume and surface WS      
parameterizations in the imaginary nuclear potential [89,90].   
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• C. Fröhlich and T. Rauscher [91,92] proposed a modification of the potential 
from [86], in which the form of the real nuclear potential was varied and a 
potential strength between 360 and 390 MeV·fm3 was obtained.  This 
modification was introduced to more accurately describe (α,n) and (α,γ) 
reaction data.   

• Most recently, Kumar and Kailas [94] have  obtained a global potential by 
studying elastic scattering data over a wide mass (A = 12 -209) and energy 
range (Coulomb barrier to about 140 MeV).  A volume WS form is used in 
both the real and imaginary part.  The geometry form factors have been 
obtained by considering the systematics of volume integrals (JR).     

 Although it was not used in comparison to the data from this work, an additional 

global potential is that of Demetriou [95]. 

• This global potential uses a double folding parameterization whose goal it 
was to mainly reproduce (α,α), (α,γ), (α,n), (n,α) and (α,p) reaction cross 
sections at low energies in medium mass nuclei.  The double folding 
parameterization in the real part was tested with three different potentials for 
the imaginary nuclear potential with different mass and energy dependences 
resulting from a microscopic study of the experimental data.  

  Considering the astrophysical interest in explosive scenarios, the global 

parameterizations should describe the existing (γ,α) [96] and (α,γ) [32, 65, 97, 98, 99]  

cross sections for medium and heavy mass nuclei.  These potentials have been derived by 

adjusting the potential parameters to elastic scattering data at medium and high energies 

(between 20 and 100 MeV), with the exception of [91,92] (only particle capture reaction 

data was considered). 

   

6.1.1 Comparison to current Models  

    One such recent comparison of experimental data to global parameterizations  

has been done by D. Galaviz [10,39] via α-elastic scattering on 112,124Sn.  Fig. 6.1 shows 

the experimental cross section obtained by Galaviz [10,39] to the cross section obtained 



 

83  

using the geometry parameters of the different global potentials [86,90,91,92,95].  By 

dividing the Rutherford normalized cross sections of the two isotopes, the variation is due 

to the effect of the difference in neutron number.  None of the global parameterizations 

are able to accurately match the experimental data. 

    

 

Figure 6.1 Mass dependence (arising from the difference in neutron number) of 
experimental cross section of 112Sn (p-nucleus) versus 124Sn compared to the cross section 
obtained using standard global potentials [39].  The Rutherford normalized cross sections 
are shown as a function of center-of-mass angle. 

 

     The same comparison has been obtained in this study (Figure 6.2 and Figure 

6.3).  Here, the Rutherford normalized cross section of 120Te to 130Te at all measured 

energies is compared to the cross section obtained from standard global potentials 

[86,89,90,91,92,94].  It is difficult to say which potential is the best reproduction of the 

data.  The trend exhibited is that below the barrier (19 MeV), the Avrigeanu potential 

gives the most accurate representation while above it is the McFadden/Satchler potential.  
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   If we examine the geometry properties of the potentials, we see that all 

four potentials use WS forms in the real and volume parts of the imaginary potential; 

however, the Avrigeanu potential adds a surface WS contribution in the imaginary part.   

In addition, the Fröhlich potential and McFadden/Satchler potential are identical in the 

imaginary geometry terms.  They differ only in the values for the real part of the potential 

(both employing WS forms).  Unambiguous determination of the real part of the optical 

potential is known at a particular distance [41] while the imaginary term has a very strong 

energy dependence at sub-barrier energies and its behavior is largely unknown [42].  In 

addition, the elastic scattering at low energies is very sensitive to the surface region of the 

potential.  The family problem was discussed in Section 3.3.2.  All the potential families 

should cross at a particular radius, RS, which is usually referred to as the sensitivity 

radius [100] (it is called the strong absorption radius in the case of higher-energy elastic 

scattering).  At energies close to the barrier, the sensitivity radius is situated in the surface 

region [41].  It has been suggested by [41] that the surface region of the potential (R ≥ R1 

+ R2) is much more sensitive to small changes of the density parameters than the inner 

region. 
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Figure 6.2 Mass dependence (due to neutron number) of 120Te/130Te at 17 MeV (above) 
and 27 MeV (bottom) compared to the cross section obtained from standard potentials 
[86,89,90,91,92,94]. 
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Figure 6.3 Mass dependence (due to neutron number) of 120Te/130Te at 19 MeV (above) 
and 22 MeV (bottom) compared to the cross section obtained from standard potentials 
[86,89,90,91,92,94]. 
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They conclude that as a result of such structure effects, the strength of the nuclear 

potential in the region near the barrier radius may vary by about 20%, and the major part 

of this variation is connected to the diffuseness parameter (a).  They also suggest a value 

of 0.62 fm for the diffuseness (for the real nuclear potential).  This could explain why the 

McFadden/Satchler potential describes the data better than the Fröhlich potential since 

the only difference between them is in the real part.  In the case of the former, the 

diffuseness value for the real part is 0.52 fm versus 0.48 fm for the latter.       

      The energy dependence of the potential was also tested in this study.  Figure 

6.4 shows the potential for 120Te and 130Te compared to standard global potentials 

[86,89,90,91,92,94] obtained from the current study.  The Avrigeanu potential gives an 

accurate representation of the data for the p-nucleus 120Te and its neutron rich counterpart 

130Te at 17 MeV.  It greatly overestimates the data at 27 MeV.   
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Figure 6.4 The Rutherford normalized cross section of 120Te (top) and 130Te (bottom) is 
compared to the global potentials of [86,89,90,91,92,94].  The Avrigeanu potential gives 
a very accurate representation at low energies but at the high energy it overestimates the 
diffraction pattern.       

 

     To explicitly see the effect (if any) of the potential to a variation in charge, 118Sn was 

included in the list of measured nuclei (Table 6.1).  Figure 6.5 illustrates the region of the 

chart of nuclides that has been tested in the current and previous studies.  Nuclei in pink 

in addition to 106Cd have been tested in this study while those in blue have been 
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Figure 6.5 Nuclei in pink have been measured in this work in addition to a 
remeasurement on 106Cd(α,α)106Cd [10,81].  Nuclei in blue have been measured by 
Galaviz [39] and the nuclei in green have been measured by Kiss [81] (110,116Cd are yet 
unpublished). 
 

 

tested by Galaviz [39] and those in green by Kiss [81].  This collaborative effort  

has focused on the Z = 50 region since this is a closed shell.  Near closed shells the level 

density is reduced and hence the statistical model may not be fully applicable.    

 106Cd and 118Sn at the two extreme energies (17 and 27 MeV) are compared to 

standard model predictions (Figure 6.6).  The same trend for the energy dependence 

exhibited for the p-nucleus 120Te and its neutron rich counterpart 130Te is seen for all      

isotopes [Appendix D]. 
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Figure 6.6 The Rutherford normalized cross section of Cd and Sn is compared to the 
global potentials of [86,89,90,91,92,94].  The Avrigeanu potential reproduces the 
scattering data at 17 MeV but it clearly overestimates it at 27 MeV

106 118

.       
 
 

     Let us revisit this overestimation in diffraction pattern that we have seen from 

the Avrigeanu potential above the Coulomb barrier (19 MeV) in both the mass and 

energy dependence (Figures 6.1-6.4; 6.6).  Figure 5.7 gives the Rutherford normalized 

cross section of 106Cd(α,α)106Cd at all measured energies.  In comparison to the other 

nuclei (Appendix C), there is a more pronounced minimum that occurs at 27 MeV. 

Recall that the Avrigeanu potential (Section 6.1) was obtained from considering elastic 

scattering data off of nuclei in the A ≈ 100 mass region.  
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Although we are at a higher energy (27 MeV), still at this mass range the level density is 

reduced.  The HF theory assumes that there exists many resonances such that the 

transmission coefficients become averaged quantities.  If, however, we are at a reduced 

level density, then individual resonances become important.  The elastic cross section is 

composed of two parts: the nonresonant part and the compound elastic part [101].  The 

nonresonant part (often called the shape elastic or potential scattering) offers a smooth 

background.  This is what is seen below the barrier (the scattering is not probing the 

nuclear interior) since it is the dominating part of the cross section.  At higher energies, in 

the vicinity of a resonance (at resonance energies), this becomes the dominating factor in 

the elastic cross section.  This would account for the increased diffraction patterns seen in 

both the Avrigeanu potential at 27 MeV and that of 106Cd(α,α)106Cd.  

 

6.1.2 An improved α-nucleus global potential? 

  Of the global potentials considered in this work, the Avrigeanu potential and the 

McFadden/Satchler potential seemed to offer the best reproduction (Section 6.1.1).  A 

very rough attempt has been made to constrain the potential parameters.  Keeping the 

imaginary parts of the Avrigeanu potential fixed, the diffuseness parameter for the real 

part has been changed to that of the McFadden/Satchler value of 0.52.  Figures 6.7 and 

6.8 show the calculated Rutherford normalized cross section using this “modified” 

Avrigeanu potential in comparison to the 106Cd experimental data (taken above the 

Coulomb barrier only).   



 

92  

 
0 50 100 150

Θ
c.m.

0.001

0.01

0.1

1
σ/

σ ru
th

106
Cd(α,α)106

Cd

Avrigeanu (MS - a
real

)

Avrigeanu (MS - r
real

:1.22)

27 MeV

 

Figure 6.7 Rutherford normalized cross section of 106Cd(α,α)106Cd at 27 MeV compared 
to a modified Avrigeanu potential.  The potential with the matching McFadden/Satchler 
diffuseness parameter in the real part (0.52) matches the amplitude of the diffraction 
pattern.  The red line shows a modification of the Avrigeanu potential by assuming a 
value of 1.22 for the real radius.  Here the diffraction pattern is damped.  Both 
overestimate the cross section in magnitude. 

 

 
Perhaps more accuracy can be achieved from the Avrigeanu potential over the entire 

energy range by changing the diffuseness parameter in the real part at the higher energies 

and refitting to the data.  Perhaps even greater results could be achieved by repeating the 

method used by Avrigeanu in deriving the global potential on medium mass nuclei where 

the level density is higher.       
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Figure 6.8 Rutherford normalized cross section of 106Cd(α,α)106Cd at 22 and 24.5 MeV 
compared to a modified Avrigeanu potential (diffuseness parameter in the real part 
(0.52)).   
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6.2 Optical Model Analysis 

      The analysis of the experimental absolute cross sections proceeds by 

performing a minimization, and adjusting the different parameters of the potential 

systematically [102].  

2
redχ

For the inputs into the model, the following values were used:   

• The Coulomb potential radius (equation 3.13) is chosen to be equal to the 

mean square radius of the double folding potential: RC =  rrms,df. 

• The parameters C(E), α(E), and β(E) (eq.3.20)  are chosen to be equal to the 

corresponding values derived at an energy Eα = 20 MeV  

 [48].  The adopted values are: 

 C = 0.460      α = 3.962      β = 10.785       

• For the imaginary potential, only surface and volume WS 

parameterizations are used. 

 

6.2.1 Cross Section Calculation 

  The analysis and calculation of the theoretical cross section has been 

performed [102].  The code calculates the solution of the scattering matrix S for a certain 

nuclear potential.  Only those terms which contribute to the elastic scattering are taken 

into account [10].  A sufficient number of partial waves are taken, and the corresponding 

values for the scattering phase shift δl and the reflection coefficients ηl are derived [10]. 

Figure 6.9 shows the values for ηl and δl derived in one calculation of the scattering 

matrix S corresponding to the elastic scattering of α particles on 120Te at a lab energy of 
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27 MeV.  The number of partial waves considered is sufficient (≈30) to completely 

describe the elastic scattering process (partial waves with ηl =1 and δl =0 don’t contribute  

to the nuclear scattering process).  Once the matrix elements of the scattering matrix are 

calculated, it is possible to derive the scattering cross section induced by the initial 

optical potential [10]. 
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Figure 6.9 Amplitude and phase shift (as a function of the number of partial waves) 
derived in an S matrix calculation performed for 120Te at a bombarding energy of 27 
MeV. 
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6.2.2 Local Potentials 

   Figures 6.10, 6.11 and Appendix E show the Rutherford normalized cross 

section calculated from the derived local potentials compared to the experimental data.     
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Figure 6.10 Comparison of the Rutherford normalized cross section calculated from the 
local potential of 126Te at all energies to the experimental data (no normalization has been 
applied). 

 

In some cases, it was necessary to apply a normalization factor to the potential.  The 

fitting routine assumes that the first point (of the monitor detectors) is 1 [102, 103].  
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Since the monitor detectors could not be set to this value (Section 5.2), there is a slight 

offset that occurs.  The value of this normalization was not applied to the potential 

parameters.  It is only used to see the accuracy of the Rutherford normalized cross section 

calculated from the potential parameters to the experimental cross section [103].  It shows 

how the cross section calculated from the derived potential parameters would look had 

the cross section calculated from the monitor detectors been equal to 1.  Where necessary, 

in the case of the Te isotopes, this normalization was applied (again for illustrative effects 

only).  This normalization was too great in the case of Sn and Cd.  In those instances 

where needed, a 4% normalization was applied to the calculated cross section (Figure 

6.11). 
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Figure 6.11 Rutherford normalized cross section calculated from the local potential of 
106Cd at 24.5 MeV.  Shown is the 4% normalization applied to the cross section derived 
from the local potential (illustrative purposes only).  The first few points fall off of the 
unnormalized curve but the rest are unaffected. 
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6.2.3 Real part 

   Using a double folding parameterization for the real part of the potential allows 

for the removal of certain uncertainties (continuous ambiguities) by fixing the shape.  In 

this way, there are only two parameters to consider, the strength of the potential (λ) and 

the width (w).  The real part can be characterized by its strength (JR) (defined in equation  

3.14).  This allows for the normalization between different results (from different 

experiments).  Table 6.2 lists the values for the real strength of the potential for all 

isotopes at all energies.  The first column represents the value of the real strength  

potential.  The second column is the rms radius with the corresponding χ2 for that 

particular fit (this is the total χ2 -including geometry parameters of the imaginary part).  

The width of the double folding parameterization w has been adjusted locally for each  

nucleus.  The adopted corrections produced by the deviation of the charge density are 

always less than 2%.  It was suggested by [36] that a value close to unity for this 

parameter (w) should be kept otherwise the results would not yield a correct description 

of the scattering data.  The strength of the potential has been varied making use of the 

parameter λ, which has been parameterized linearly with the energy: 

      
0,

..**

R

mc

J
Eba ⋅+

=λ                                      (6.1) 

Figure 6.12 shows the parameterization of λJR,0 as a function of center-of-mass energy for 

120Te.  JR,0 is defined as JR with λ = 1.   
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TABLE 6.2  

DOUBLE FOLDING PARAMETERIZATION RESULTS FROM FITS FOR ALL 

ISOTOPES. 
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Figure 6.12 λJR,0 parameterized as a function of center-of-mass energy for 120Te. 

 

The coefficients a* and b* and the strength of the potential (JR,0) are listed in Table 6.3.   

 

TABLE 6.3 

VALUES FOR THE PARAMETERIZATION OF λ   

 
106Cd has only been parameterized at 19 MeV and below using this method.  A separate 
parameterization for 106Cd had to be taken at the higher energies (equation 6.2). 
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  For the case of 106Cd, the value of w could not be fixed at all energies (the value 

listed in Table 6.3 is valid for the energy range of 17 – 19 MeV).  Instead, a linear 

parameterization of w with energy was obtained from 22 -27 MeV (Table 6.4): 

 

  w = -0.0014Ec.m. + 0.9715 and   λ = -4.4525w + 5.6325              (6.2) 

 

TABLE 6.4  

VALUES OF THE PARAMETERIZATION OF THE REAL PART FOR 106Cd FROM 

22 - 27 MeV 

 

 

a*(w) and b*(w) correspond to the coefficients obtained from the equation on the left 
(6.2) while a* and b* are those derived from λ (equation on the right of 6.2) 
 

 

To see any possible trend of JR as a function of mass, the values of JR (equation 3.14) for 

λ = w = 1 were also obtained (Table 6.5).  Factoring out the strength (λ) and width (w) 

from the potential thusly allows the effect of N on the real nuclear potential to be clearly 

seen (in the case of the Te isotopic chain).  The trend of JR is one of decreasing value with 

increasing mass number.  In actuality, it is one of increasing neutron number since there 
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is a large deviation in value from 106Cd to 118Sn (Z = 48 and 50, respectively but N = 58 

and 68, respectively).  In particular, the value of JR for 118Sn and 120Te are practically  

TABLE 6.5  

VALUE OF JR FOR λ = w = 1 

 

    

identical.  Both have a closed neutron subshell of 68 (Z = 50 for 118Sn- magic number and 

Z = 52 for 120Te).  Consider the value of JR (for λ = w = 1) for previous studies done of 

α-elastic scattering on p-nuclei and nuclei from this study (with the exception of 112Sn) 

(Table 6.6).  106Cd has a larger value than the other isotopes.  In fact, after this isotope 

there is a decrease in the strength with increasing mass number.  There is some sort of 

enhancement that happens at 106Cd.     
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TABLE 6.6  

VALUES OF JR (λ = w = 1) FOR ALL PREVIOUS STUDIED NUCLEI (WITH 

EXCEPTION OF 112Sn WHICH WAS UNLISTED). 

 

 

 

 

6.2.4 Imaginary Part 

   The parameterizations used to describe the imaginary part of the nuclear 

potential consist of WS potentials (both volume and surface).  It was shown [36] that this  

particular combination delivered the most precise description of the scattering cross  

sections.  Since this shape is not fixed, a normalization of the geometry parameters to the 

experimental data is required.  Like the real strength (JR), the imaginary geometry terms 

can be defined by an imaginary strength (JI – equation 3.14).  Table 6.7 shows the 

contribution of the surface to volume terms of the imaginary potential for all isotopes. 

Not all of the geometry parameters for all nuclei could be fixed at all energies.  Instead, a  
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linear parameterization as a function of the center-of-mass energy was applied in several 

cases.  Figure 6.13 shows such a parameterization taken for the volume depth (WV) and 

diffuseness (aV) for 130Te. 

TABLE 6.7  

THE SURFACE TO VOLUME CONTRIBUTION OF THE IMAGINARY 

POTENTIAL FOR ALL ISOTOPES.  
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Figure 6.13 WV and aV parameterized as a function of center-of-mass energy for 130Te. 

 

In the previous work done on 92Mo [36] and 112,124Sn [39], the contribution of the volume 

term to surface term was JI,vol ≈ 0.22 JI,surf .  The dominance of the surface term at lower 

energies has been mentioned [104], whereas an enhancement of the contribution of the 

volume Woods-Saxon potential with the energy above the Coulomb barrier may be 

necessary [78].  The increase of the volume contribution with increasing energy is 

observed for the case of 124,128,130Te (Table 6.7). 
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    Tables 6.8 and 6.9 give the imaginary geometry parameters of the derived local 

potentials of all isotopes considered in the study.  Perhaps due to its ground state 

deformation [85], 124Te could not be parameterized at 27 MeV and an extra dependence 

in energy was necessary in the volume diffuseness (av).  

TABLE 6.8   

IMAGINARY PARAMETERS FOR 106Cd, 120Te, 126Te          

 

 

Imaginary geometry parameters where a fixed value at all energies was possible (with the 
exception of w for 106Cd at the higher energies – 22, 24.5 and 27 MeV).  
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TABLE 6.9  

IMAGINARY GEOMETRY TERMS PARAMETERIZED AS A FUNCTION OF 

ENERGY. 

 

                

     

          The previous study by Galaviz of the mass dependence of the α-nucleus potential 

[39] (Table 6.10) was limited to the energy range of the Coulomb barrier and below (E = 

14.4 and 19.5 MeV for 112Sn and E = 19.5 MeV for 124Sn).  
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TABLE 6.10  

IMAGINARY GEOMETRY PARAMETERS AND WIDTH (w) FOR 112,124Sn [39] 

 

 

Comparing the results from Galaviz [39] with the current ones of 118Sn at 16.44 and 

18.38 MeV, a trend emerges.  Parameterizing the depth (WS) and diffuseness (aS) of the 

surface terms as a function of neutron number gives: 

 

   WS = -12.012*N + 1088  aS = 0.0067*N - 0.1967          (6.3) 

 

TABLE 6.11  

PARAMETERIZATION OF THE DEPTH AND DIFFUSENESS OF THE SURFACE 

TERMS AS A FUNCTION OF NEUTRON NUMBER  

 
 
From this study and that of Galaviz [39] 
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The difference in the imaginary depth and diffuseness between [39] and the current study  

is less than 10% in all cases (Table 6.11).  This linear parameterization of the surface  

terms that arises could be because the previous study [39] was limited to the low energy 

regime where the surface is most sensitive to the scattering.  The higher energy range in 

the current study should account for the difference observed in the volume terms (since at 

higher energies there may be an enhancement of the volume contribution). 

 

6.2.5  Parameterizations   

       Atzrott et al. [50] computed the α-nucleus potentials for a number of semi- 

and doubly magic nuclei over a large energy range (140 to 27 MeV).  Their analysis 

included the DF parameterization in the real part.  Different parameterizations for the 

imaginary part were chosen including Fourier-Bessel and WS volume and surface terms.  

Considering also the study done on 92Mo(α,α)92Mo and 112Sn(α,α)112Sn [36,39], the 

general trend of JR has been linear such that it increases with decreasing energy (Figure 

6.14).     

      The total strength of the real potential normalized to the number of interacting 

nucleons, defined in equation 3.14 as the volume integral JR, is a way to normalize 

between different results.  Figure 6.15 shows the trend of JR of all nuclei obtained from 

this study.  Notice that the values of 106Cd fall within the bottom range for this family of 

potentials (320-350 MeV fm3).   Referring back to Table 6.6, this is expected since there 

seems to be an enhancement in JR (λ = w = 1).  Previous results of 106Cd by [81] list a 

value of 266.91 for JR,0 (λ = 1 and w  = 0.987) which at Elab = 17.65 MeV would give a 
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result of JR = 367 MeV fm3.    This value corresponds to a different family of potentials 

than the one considered here.  
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Figure 6.14 Volume integral values (JR) from previous studies on semi-magic and doubly 
magic nuclei. 
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Figure 6.15 Strength of the real potential for all isotopes of this study. 
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0

   Since the shape of the real potential is given by the folding procedure, this 

means that the real part of the α-nucleus optical potential can be determined at energies 

below the Coulomb barrier with relatively small uncertainties (discrete ambiguities can 

be resolved from the systematic behavior of α-nucleus potentials).  The situation for the 

imaginary part of the potential is different. The volume integral JI of the imaginary part 

depends strongly on the energy because many reaction channels open at energies around 

the Coulomb barrier.  Different parametrizations have been proposed [33,105,106]. As an 

example, the Brown-Rho (BR) parametrization [105] is applied to 128,130Te.  It takes the 

form of:  

       for )( .. =mcI EJ 0.. EE mc ≤  

 22
..

2
..

.. )(
)(

)(
Δ+−

−
=

omc

omc
omcI EE

EE
JEJ   for > E..mcE 0                        (6.4) 

 

with the excitation energy E0 of the first excited state.  The saturation parameter J0 and  

the rise parameter Δ are adjusted to the experimentally derived values (Table 6.12).   

TABLE 6.12  

VALUES FOR THE BR PARAMETERIZATION APPLIED TO 128,130Te 
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 Figure 6.16 shows the values of the imaginary strength of the potential at the 

different energies.  The data points fall nicely on the curve.  Unlike the real part, the 

shape of the imaginary potential remains undetermined.  The noted ambiguities (arising 

from the inability to fix the geometry form factors) reduce the reliability of extrapolation 

to lower energies.  
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   Figure 6.16 The BR parameterization applied to 128,130Te. 

  

  Table 6.1 listed the nuclear properties of the nuclei considered in the current 

study.  In particular, several of the nuclei had ground state deformation.  This effect (in 

particular in the case of 124Te) perhaps shows itself in the inability of fixing all of the 
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geometry terms in the imaginary part.  It has previously been suggested by Rauscher [78] 

that deformation effects should be included in the statistical model.  While 124,128,130Te 

and 118Sn required some parameterization of the imaginary terms as a function of energy,  

124Te required an extra parameterization in the surface contribution.  This also seems to 

support the idea that for deformed nuclei, a stronger absorption is present at lower 

energies [103].  When taking a global look at the local potentials derived in this study, 

there doesn’t seem to be any pattern arising with charge (at least not at such a close 

vicinity Z = 48,50 and 52); however, a possible predictive link was observed when 

looking at the depth of the imaginary volume term (WV) at low energies as a function of 

neutron number.    

TABLE 6.13  

RELATIONSHIP OF VOLUME DEPTH (WV) TO NEUTRON NUMBER (* IS A 

CLOSED SUBSHELL). 

 

 

The volume depth of the imaginary term for each of the isotopes studied is listed in Table 

6.13.  106Cd, 118Sn, and 120Te all have a closed neutron subshell.  118Sn also has a magic  
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proton shell (Z=50).  The other Te isotopes are unfilled subshells and shells; however, a 

linear trend of WV with N exists for both sets of data.  Parameterizing both, the following 

relationships ensue: 

    Closed subshell:  WV = -0.0963*N + 2.6243 

    Unfilled subshell: WV = -0.2875*N + 19.061       (6.5) 

 

The value for WV obtained by Galaviz for 112Sn and 124Sn was -3.137 and -2.467, 

respectively [39].  Using the unfilled subshell equation, a value of -2.214 is obtained for  

the case of 124Sn.  This is a difference of about 10%.  Although not a closed N subshell, if 

we parameterize 112Sn using the closed subshell equation (6.5), a value of -3.346 is 

obtained.  This is a 6% difference.  More α-elastic scattering data within this current 

energy and mass regime may provide some insight as to whether the relationships of 

equations 6.3 and 6.5 could be generalized.   

 

6.2.6 Comparison of Local Potentials 

     Due to the very small number of α-elastic scattering experiments performed on 

p-nuclei [35,36,39,81] and the difficulties previously outlined in determining potentials 

below the Coulomb barrier, 106Cd(α,α)106Cd was remeasured [10,81] and extended to the 

higher energy regime.  Table 6.14 shows the geometry parameters of the result obtained  

in this study along with the parameters resulting from the study done by [81].  The energy  

range for the Atomki run was 16.13, 17.65 and 19.61 MeV (lab frame).  Note that in this 

current study an energy value of 17.65 MeV was chosen to exactly match with the  
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Atomki results.  Although a comparison cannot be made at one energy point since the 

potential parameters are obtained from considering all energy values; nevertheless, it 

makes for a more effective comparison.  Note the difference in the b* parameter (slope) 

 

TABLE 6.14  

SOLUTIONS OF 106Cd(α,α)106Cd OBTAINED FROM THIS STUDY AND [81] 

 

 

 

from the two solutions.  For all previous studies done on p-nuclei [36,39,81], this weak 

value for b* was chosen so as to reduce the uncertainties of the extrapolation to the 

relevant energy region.  Due to the much larger energy regime considered in this study,  

maintaining this value for the slope for all isotopes was not possible.  It should be 

emphasized that the parameters of the DF potential (excluding λ and w) were identical.  

That is, using 0.987 for w obtained from [81], a value of JR,0 = 266.91 (an exact match)  

results when doing the calculation; therefore, the variation in the real part of the potential 

from the separate local potentials doesn’t come from any variation in the target or 

projectile densities but it arises only from the strength (λ) and width (w) of the real  
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potential.  The relation between these two quantities has been previously studied [36].  

 

TABLE 6.15  

PARAMETERS OF THE REAL AND IMAGINARY PART OF THE LOCAL 

POTENTIALS DERIVED FROM THIS STUDY AND [81] 

 

 
Table 6.15 lists the values of the real and imaginary parts of the two solution sets (at the 

same energy Elab = 17.65 MeV).  Here two different minima are presented for 106Cd.  

According to the Atomki measurement, the correct family doesn’t correspond to the one 

suggested by [43].  The third row shows the difference in percentage of the imaginary 

geometry terms.  Giving a conservative estimate of 5% for the errors, with the exception 

of the volume and surface diffuseness (av and as), all other geometry parameters would 

fall within the range.  In addition, when comparing the surface to volume ratio of the 

imaginary terms, one finds for both data sets that: 

          JI,V = 0.22 JI,S 

It has been suggested [107] that the relative weight between the volume and surface terms 

of the imaginary part of the nuclear potential should be JI,V = 0.22 JI,S.   Although the 

variation in diffuseness cannot be discounted, if for the moment any sensitivity in the 

geometry parameters individually is ignored and the relative weight is considered, then 
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the difference between the two arises from the real part only.  Although the shape of the 

real part of the potential is fixed below the barrier, it has been suggested that at low α- 

energies, there is a strong energy dependence of the real part of the α-nucleus interaction  

[108].  This has been confirmed by α-scattering on 16O and 15N [41].  This seems to 

suggest [43] that the correct family is the one that falls within the range of 320-350 and 

not the one offered by [81]. 

 

6.3 Astrophysical Implications 

     Cross sections and reaction rates for astrophysical applications are in the low  

energy regime (thermal energies up to a few MeV).  In addition, most of the rates are 

experimentally undetermined and a reliable model must be developed to predict these 

properties with an acceptable degree of accuracy across the nuclear landscape.  The 

challenge then is to try and provide all the necessary inputs into the model in a reliable 

way.   

    This study focused on the determination of local α-nucleus potentials in order to 

try and remove some of the discrepancy observed between experimental data and 

theoretical predictions (as in the case of α + 106Cd and 120Te(α,n)).  The correct  

modeling of the p-nuclei abundances requires an accurate global α-nucleus potential.  

Remember that the experimental database for (α,γ) reactions on p-nuclei is not a large 

one [32,64,65,109].  In addition, almost all reactions have been limited to under A ≈ 140.   

The p-process simulation done by W. Rapp [19] showed the increased sensitivity of the  
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reaction rates above this mass region.  This was verified in a previous study done on 

144Sm(α,γ) [32]  where not only was there a large overestimation in cross section from the 

model predictions but in addition the local α-nucleus optical potential derived [35] also 

failed to reproduce the experimental data at the lowest energies (a deviation of 3.5 at the  

lowest measured energy of 10.19 MeV). 

 

6.3.1 Extrapolation of the potentials 

 The real part of the nuclear potential can be extrapolated linearly to within the    

Gamow window.  Table 6.16 lists the value for the strength of the real potential for the p-

nuclei 106Cd+α and 120Te+α assuming the approximate energy regime for these p-process  

reactions in the temperature range of T9 = 2-3 K. 
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TABLE 6.16  

VALUES OF THE STRENGTH POTENTIAL OF THE REAL PART AT THE 

APPROXIMATE EFFECTIVE BURNING TEMPERATURES OF THE GAMOW 

WINDOW FOR THE Cd+α AND Te+α SYSTEMS106 120

 

 

 

 Although the Brown-Rho parameterization was used to parameterize the 

imaginary strength potential for 128,130Te, it was not possible to do so for other isotopes.  

A variation in JI is required and for 106Cd and 120Te, the value of JI was the same at all 

energies (the imaginary geometry parameters were fixed at all energies). 

 

6.3.2 The S-factor of 106Cd(α,γ)110Sn 

       The calculation of the S-factor was performed by using the web based NON-

SMOKER [110].  The only parameter that was changed was the α-optical potential, all 

other inputs were kept at the standard settings.  The values used were taken from the local 

potential at 17 MeV.  Since it was not possible to parameterize the imaginary term, it was 

therefore not possible to use an extrapolation down to the Gamow window in the 

calculation of the S-factor.  The real part of the potential is the result from the calculation  
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of eq. (3.14) and was input as 800 data points in radial step sizes of 0.025.  The imaginary 

part was taken as a sum of volume and surface WS potential with the corresponding 

geometry form factors obtained from the fits to the data.   

     Figure 6.17 shows the results of the S-factor calculated from the local 106Cd  

potential.  In addition, the S-factor using the standard settings of NON-SMOKER is 

shown.  In that case, the α-potential is the global one of McFadden/Satchler.  The 

experimental data points for the S-factor of the α-capture reaction are those of the Notre 

Dame experiment.  When looking at Figure 6.17, note that as we go farther within the 

Gamow window (towards decreasing energy) the data to calculated S-factor value from 

the local potential seems to deviate more and more.  The exception to this is at 11 MeV 

but here the (α,n) channel opens which is stronger than the (α,γ) and suppresses it.  

Remember that the potential was taken at 17 MeV.  No extrapolation was used.  It seems 

to indicate that an energy extrapolation within the Gamow window may produce better 

agreement.  While it is possible to extrapolate the real part within the window, it is 

unclear how such an extrapolation should occur for the imaginary part.  Even if we keep 

the same relative weight of 0.22 of surface to volume, how to effectively weight the 

individual imaginary geometry terms is unclear.  Any conclusive results are difficult to 

draw since there are several unknowns.  These include the effect of the real part of the 

potential on the S-factor (even for a small deviation) and how well an extrapolation of the 

local potential down to the Gamow window would reproduce the data (in particular of the  

imaginary part which varies strongly below the barrier).   
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Figure 6.17 S-factor of 106Cd(α,γ) using the local potentials of 106Cd obtained in this 
study along with the values obtained from the standard settings of NON-SMOKER 
[77,78,79,110,111]. 

 

6.3.3 The S-factor of 106Cd(α,n)109Sn and 106Cd(α,p)109In 

  The local potential of 106Cd obtained from this study was also compared to 

the experimental results obtained from [64] for the (α,p) and (α,n) channels.  When  

comparing the local potential to the results obtained from the standard settings of NON-

SMOKER [77,78,79,110,111], we see that the shape of the (α,n) is very similar in both 

cases (Figure 6.18).  The local potential reproduces the lower energy points better while 

the standard potential better matches the higher energy data. 
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       When comparing the potentials to the (α,p) case, a different trend arises.    

The shape of the two potentials is exactly reproduced until about 11 MeV where the local 

potential deviates much more strongly.  The lowest energy point crosses the local 

potential while the second data point falls on the standard potential curve.  In fact, the  

local potential places the peak of the S-factor at a much higher energy.   
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Figure 6.18 Experimental S-factors of 106Cd(α,n)109Sn and 106Cd(α,p)109In compared to 
the S-factor values obtained from the local potential and NON-SMOKER 
[77,78,79,110,111].    
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6.3.4 The S-factor of 120Te(α,n)123Xe 

   Further confirmation of the very strong sensitivity of the S-factor to the α-

nucleus potential comes from the case of 120Te(α,n)123Xe.   

   As was done for the 106Cd(α,γ)110Sn reaction, the S-factor was calculated using 

the web based NON-SMOKER [110].  All of the standard settings were kept fixed with 

the exception of the α-nucleus potential.  In that case, the local potential of 120Te derived 

from this study was used.  Figure 6.19 shows the experimental S-factor values in 

comparison to the S-factor derived from the local potential of 120Te and the theoretical S-

factor values obtained from the standard settings of NON-SMOKER [77,78,79,111].  

Although the same flat trend of the S-factor is reproduced, the values derived considering 

the local potential underestimate it while the values obtained using the standard global 

potential [86] grossly overestimate it (Table 6.17).    
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Figure 6.19 S-factor of 120Te(α,n)123Xe experimental values compared to the theoretical 
S-factors values derived from the 120Te local potential considered in this study and the 
global potential of McFadden/Satchler (standard settings of NON-SMOKER).  The 
values are those of the 149 keV γ-line [77,78,79,86,110,111]. 
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TABLE 6.17  

120Te(α,n)123I: EXPERIMENTAL S-FACTOR COMPARED TO NON-SMOKER 

 
 

Comparison of data (1st row) to theory (2nd row: local potential; 3rd row: NS values) of 
the S-factor for 120Te(α,n).  NON-SMOKER (NS) greatly overestimates the values.  
 

     Avrigeanu [89] has compared (n,α) data of 92,95,98,100Mo with the potential 

obtained by [87,90] and that of [86].  At low energies (within the Gamow window), the 

potentials fail to match the experimental data.  In fact, the same trend is observed.  That 

is, the potential underestimates the data points.  It has been suggested [89] that there is a 

need for an increased diffuseness parameter to correctly describe (α,n) and (n,α) data.  

This would seem to support the suggestion that [89] the temperature dependence of the 

nuclear density distribution function would have to be included.  The failure of the local 

potential of 120Te to reproduce the capture data seems to suggest that some modification 

(to the potential for α,n reactions) is needed.  For the case of 106Cd(α,n), the local 

potential (and standard potential) reproduced the experimental data fairly well.  Why is 

there a much larger deviation in the case of 120Te(α,n)?  This effect could be due to the 

fact that we are at a higher mass region where the (γ,α) branchings are more dominant 
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and hence the (α,n) and (α,p) much more sensitive to the α-optical potential (as in the 

case of 144Sm(α,γ)148Gd [32]).   

 

6.4  Local Potentials: A user’s guide 

  Table 6.18 lists all of the local potential parameters derived in this study.  

Although the real part of the potential can be extrapolated down (by use of the equation 

under the column “λ”) past 17 MeV, the imaginary parameters cannot and are valid 

within the specified energy range.   
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TABLE 6.18 

 LOCAL POTENTIAL PARAMETERS 
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6.5  Resonances 

     The pattern of phase shifts observed in Fig. 6.7 (for 106Cd), the large 

overestimation in diffraction pattern of the Avrigeanu potential (especially in 106Cd – a 

deformed nucleus near a closed shell), and the huge overestimation in the last point of the 

S-factor of 106Cd(α,p) (Fig. 6.18 – right below the neutron threshold) indicate the 

presence of isolated resonant components.  This is also evidenced when looking at the 

cross section calculated from the Avrigeanu potential of 128Te versus 130Te at 27 MeV 

(Appendix D).  In that case, we see an increased diffraction pattern in 128Te.  This is most 

probably due to contaminants arising from the 128Te oxide (versus 130Te which is 

metallic).  In addition, the large χ2 obtained in the fitting (Table 6.2) indicate that the 

current model fails to include compound contributions [103].  It appears that in order to 

effectively extrapolate the nuclear potential down to within the relevant energy regime 

requires that the current global models address these resonant contributions.   
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CHAPTER 7  

CONCLUSION AND OUTLOOK 

 

     The α-nucleus potential, which is an essential component of the HF model for 

the simulation of the abundance distribution of p-nuclei, is inconsistent.  The standard 

global α-potential of McFadden/Satchler [86] and Avrigeanu [89,90] seemed to give the 

best reproduction for elastic scattering data but the standard potential [86] results in a 

large overestimation for 120Te(α,n)123Xe.  The superiority of local to global potentials has 

been shown in the case of 106Cd(α,γ)110Sn and particularly for 120Te(α,n)123Xe.  Local 

potentials for 106Cd, 118Sn, and 120,124,126,128,130Te have been obtained.  Unfortunately, due 

to the high enrichment needed (≈90%), further α-elastic scattering experiments are 

currently limited to the case of 144Sm.  Although this has been previously measured [51], 

it was obtained considering only one energy point.  Due to the very large deviations seen 

at low energy when comparing 144Sm(α,γ)148Gd [32] to that obtained from the local 

potential of 144Sm [51], a remeasurement (extending to the higher energy regime) is 

warranted.  The mass region above A≈140 is particularly important to investigate since 

the p-process simulation by W. Rapp showed the sensitivity of the abundances to a global 

variation of the rates (γ,α and α,γ) in this regime [19].   
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      Further testing of the HF model can come through activation experiments.  

This is limited above A≈120 to a handful of measurments (i.e., α-capture on 130Ba, 136Ce, 

and 162Er).  In particular, the reaction 130Ba(α,γ)134Ce would be a good candidate to test 

the local potential of 130Te.  Additional information could be made available by direct 

determination of photodisintegration rates.  Current efforts for (γ,α) reactions are 

underway at the Institut für Strahlenphysik in Dresden, Germany.  

   In addition, for those reactions producing long-lived radioisotopes or even for 

those that can be measured by the activation technique but which produce insufficient γ-

rays or low energy x-rays, AMS provides another means. 

       While several of the nuclei had ground state deformation, the particular case 

of 124Te perhaps is indicative that deformation should be included in the current statistical 

model [78].  Using a double folding parameterization on deformed nuclei has been 

considered by [112]; however, including such effects in the imaginary part of the 

potential when the geometry form factors are not fixed remains unknown.  Clearly, much 

more extensive investigation is necessary for a more accurate global α-nucleus potential.   
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APPENDIX A 

TARGET INVENTORY 
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APPENDIX B 

SUMMING CORRECTIONS 

 

Theory: Coincidence Summing [113] 

  Assume a radionuclide with the following decay scheme: 

 

 

      Figure B1 Decay scheme defining some of the parameters used in coincidence      
summing   

 

The γ-ray abundances aij can be calculated from the branching ratios Xij which are 

defined such that: 

                                               (B1) 1=∑
j

ijX
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and the abundances as: 

  
10

1021323110 1
1)(
α+

+= XXXXa      (B2) 

  
30

3030 1
1
α+

= Xa                    (B3) 

In the absence of coincidence summing, the probability per disintegration of obtaining a 

count in a photopeak Pij for any decay scheme is given by 

    pijijij aP ε=                    (B4) 

where εpij is the photopeak efficiency of the detector for photon energy Eγ = Ei -Ej.  In the 

presence of coincidence summing, this basic probability has to be corrected for the 

probability of detecting other photons, emitted simultaneously by the decaying nucleus.  

If this happens, even if the other photon deposits only part of its energy in the detector, 

the count will be lost from the photopeak (summing out).  The resulting probability 

(considering only one cascade) is given as (B5): 
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where εtij is the total detection efficiency for a photon with energy Ei-Ej.   

 

Corrections for Cascade-Summing [70] 
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133Ba 

Energy (keV)    Correction factor 

81.0       [1.000-.789(KX)-0.030(79.6)-0.203(302.9)-0.004(223.0)-0.691(356.0)- 
        0.071(276.4) -0.16(53.0] 
 
 
 
276.4     [1.000+0.005{223.0}{53.0}/{276.4}] 
        [1.000-1.520(KX)-.347(81.0)-0.079(160.8)-.337(79.6)] 
 
 
302.9     [1.000+0.008{79.6}{223.0}/{302.9}] 
        [1.000-1.478(KX)-.386(81.0)-0.076(53.0)] 
 
 
356.0       [1.000+0.038{79.6}{276.4}/{356.0}+0.022{302.9}{53.0}/{356.0}] 

[1.000-1.099(KX)-.386(81.0)] 
384.0     [1.000+.793{81.0}{302.9}/{384.0}+0.004{161}{223.0}/{384.0}] 
        [1.000-1.023(KX)-0.076(53.0)] 
 
 
 
152Eu 
 
Energy (keV)    Correction factor 

121.8 [1.000-.772(KX)-.105(244.7)-.247(964.1)-.235(1112.1)-.073(867.4)-  
  .364(1408.0)-0.005(719.4)-.029(444.0)-.008(295.9)-.009(1457.6)- 
  .024(1212.9)] 
 
244.7 [1.000-.772(KX)-.461(121.8)-.628(867.4)-.040(719.4)-.016(295.9) 
  .210(1212.9)] 
 
344.3      [1.000-.003(KX)-0.081(411.1)-0.003(930.6)-.006(764.9)-.480(778.9)- 
  .032(367.8)-.063(1089.7)-.017(678.6)-.001(324.8)-.060(1299.1)- 
  .002(520.3)] 
 
778.9 [1.000+.065{411.1}{367.8}/{778.9}] 

[1.000-.028(KX)-.962(344.3)-.004(520.3)] 
 
964.1 [1.000-1.064(KX)-.461(121.8)-.116(444.0)] 
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1085.9 [1.000+.674{121.8}{964.1}/{1085.9}] 
[1.000-.771(KX)-.116(444.0)] 

 
1112.1 [1.000+.280{244.7}{867.4}/{1112.1}] 

[1.000-1.063(KX)-.461(121.8)-.025(295.9)] 
 
1408.0    [1.000+.011{244.7}{719.4}/{1408.0}+ 
    0.079{964.1}{444.0}/{1408.0}+.016{1112.1}{295.9}/{1408}] 
   [1.000-1.046(KX)-.461(121.8)] 
 
** [ ] represents the total efficiency and { } is the photopeak efficiency. 
 

 

152Eu: all values are fit on a log-log scale and ε = 22.688E-0.81991  

TABLE B1  

PHOTOPEAK EFFICIENCY DERIVED FROM 152Eu 
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TABLE B2 

PHOTOPEAK EFFICIENCY DERIVED FROM 133Ba 

 

 

The efficiency values obtained from 133Ba allow us to check the validity of the method 

used for the 152Eu.  From the log-log fit: 
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TABLE B3  

 PHOTOPEAK EFFICIENCY VALUES DERIVED FROM THE LOG-LOG FIT 

USING 152Eu 

 

 

 

 

We see excellent agreement between the two methods. 
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APPENDIX C 

NORMALIZED CROSS SECTIONS 

106Cd(α,α)106Cd 
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118Sn(α,α)118Sn 
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120Te(α,α)120Te 
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124Te(α,α)124Te 
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126Te(α,α)126Te 
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128Te(α,α)128Te 
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130Te(α,α)130Te 
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APPENDIX D 

GLOBAL POTENTIALS 

106Cd(α,α)106Cd 
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106Cd(α,α)106Cd 
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106Cd(α,α)106Cd 
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106Cd(α,α)106Cd 
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106Cd(α,α)106Cd 
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106Cd(α,α)106Cd 
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118Sn(α,α)118Sn 
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118Sn(α,α)118Sn 
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118Sn(α,α)118Sn 
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118Sn(α,α)118Sn 
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118Sn(α,α)118Sn 
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120Te(α,α)120Te  
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APPENDIX E 

LOCAL POTENTIALS 
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