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http://www.lbl.gov/abc/cosmic/
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Classes of Radiation to Consider

Except neutrons, these particles interact primarily with the electrons in materials that they
enter … they can ionize the materials. The coulomb interaction is long-ranged so charged
particles interact with a large number of electrons and a moving charged-particle
continuously slows down until it stops.  On the other hand, a photon can only “collide” with
one electron and the interaction creates a moving electron and a cation.  Finally, neutrons
only interact with nuclei and are detected through the secondary products of nuclear
reactions.
The observation of this ionization is the fundamental operating basis for radiation detectors.

The amount of ionization is sometimes strongly, other times weakly related to the incident
kinetic energy of the particle but depends critically on the stopping medium.
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E.g, solid Silicon:  14Si atom,   r ~ 120 pm,             nucleus r ~ 3.6 fm
                               σGeo = π r2    ~ 4.5x10-20 m2                     ~ 4.1x10-29 m2
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Object of Experiment: Cosmic Rays

~cos2 Θ  angular distribution
R. Chartrand, et al. LANL

dE/dx ~ 1.5 MeV  / cm     [ for material with density ~ 1 g/cm3]

Calculation of a “shower” event

Cartoon of a “shower” event
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Interaction of massive C.P. with Matter
Massive charged particles (cosmic ray muons fall into this category) interact with
the electrons in the bulk material but the very large ratio of masses (e.g., the
smallest ratio is mp/me ~ 1800) means that the ions will travel on straight lines,
continuously slow down by kicking out electrons, and finally stop at some point
after a huge number of interactions.

We expect that the ion intensity remains essentially
constant with depth until the end of the range when
the ions come to rest.
On the other hand the kinetic energy of the ion will
drop continuously in tiny increments until rest.
The energy change is small in any single collision.Deuterons in air from:

A.K. Solomon, "Why Smash Atoms?" (1959)
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Cloud Chamber

Contrails from high flying
jets are the result of
condensation of water
vapor into droplets …

http://www.invisiblemoose.org/site_material/WALTA/Cosmic_Rays_CD/
support_material/detectors/bubble_chamber/www.lalanet.gr.jp/nsm/E-radiation.html
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Cloud Chamber Images of particles from 252Cf
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From: http://www.lateralscience.co.uk/cloud/diff.html
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General Features of Detectors
Primary Ionization is created by the interaction of the radiation in the bulk
material of the ‘detector’ – then what?
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Scintillation Counters
A few photons are produced in de-excitation of primary ionization,
scintillation devices rely on enhancing and detecting these photons.  The
primary ion pairs are essentially ignored and these materials are generally
insulators.

General requirements:
•Linear conversion of ΔE into photons
•Efficient conversion into (near) visible light 
 (e.g., Plastics: 20k/MeV or NaI: 38k/MeV)
•Transparent to scintillation photons, good optical medium
•Short decay time for fluorescence (ns OK, ps good) 
•Good mechanical properties (n~1.5 for glass)

Scintillator classes:

Organic molecules – molecular transitions in fluor
Inorganic materials – transitions in atomic dopants
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Photomultiplier Devices: Light to Current
The scintillation process produces photons in proportion to the primary ionization
… we need to count the number of photons to obtain the energy deposited by the
primary radiation in the detector.

Fig. 9.1  Knoll, 3rd Ed.

•Photocathode / photoelectric effect
•Various coatings, low w & high quantum efficiency
•Electrons avalanche down a string of “dynodes” (8-14)
•Dynodes are also coated to enhance cascades
•HV can be positive or negative (~1ooo V)
•Vacuum tube – internal getter to maintain vacuum
•Low potassium glass (40K)
•KE of electrons start out very low – some electron 
optics and external magnetic shields
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PMTs – Other Resolution Issues

Stray magnetic fields – use so-called mu-metal or iron shields

Differential sensitivity of photocathode surface – diffuse light over surface

Dark current – thermal photoelectrons, electronic noise, cosmic rays!

High voltage stability … Q ~ Vn where n ~ (number of stages minus a few)

Photocathode glass … transparent to uv or not?

http://www.scionixusa.com/
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The Berkeley Cosmic Ray Detector

Plastic scintillator, active material, creates ~ 30k photons per
CosmicRayMuon, must be polished so that light is internally
reflected to one end for collection

PMT converts photons to electrical pulse,
good optical connection, wrapped to keep
stray light (photons) out

Circuit board, supplies voltages to PMT’s,
records pulses and coincidence pulses

Two paddles – coincidences
are sensitive to direction
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Supplementary Material

Radiation Sources .. Charged Particles –1–
Radiation Sources .. Electrons –2–
Radiation Sources .. γ Rays  – 3 –
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Radiation Sources .. Charged Particles –1–

Alpha Decay:  AZ → A-4(Z-2)2- + 4He2+ + Qα    e.g.,  238U → 234Th2- + 4He2+ + Qα

                                                                                Qα = M[A-4(Z-2)0] +M[4He0] – M[AZ]

Nuclei heavier than A ~ 150 are theoretically unstable against alpha decay but because it is a quantum
mechanical tunneling process that is extremely sensitive to the Q-value of the process.  Thus, alpha
decay is only important for the heaviest nuclei and it rarely feeds excited states.

The particles are quite energetic 4 - 9 MeV but interact very efficiently with electrons in materials and
stop within ~100 microns in solids.

Two-body final state gives a discrete energy
distribution – must subtract recoil energy.

E.g., the “A=4N” natural decay chain:

Eα=8.78 MeV

Eα=6.05, 6.09 MeV
Eγ=2.61 MeV
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Radiation Sources .. Electrons –2–

Beta Decay:  n → p+ + e- +  ν + Q    e.g.,  14C → 14N+ + e- +  ν + Q
                                                                                Q = M(14N0) - M(14C)

                      and   (p+ → n + e+ +  ν + Q’)A e.g.,  13N → 13C- + e+ +  ν + Q’
13N → 13C0 + e- + e+ +  ν + Q’

Q’ = M(13C0) + 2 moc2 - M(14C)Three-bodies in final state gives continuous
energy distribution but there are thousands of
radioactivities to choose from.
Note limits:  0 < Kinetic Energy < Q

Phase space or Fermi Functions have
Coulomb shifts … Interesting example of a
radioactivity that can “decay two ways”

64Cu → 64Ni- + e+ +  ν + Q β+ = 0.6529 MeV
64Cu → 64Zn+ + e- +  ν + Q β− = 0.5782
MeV
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Radiation Sources .. γ Rays  – 3 –

Beta-delayed: A(Z+/-1) → AZ* → AZ + γ   the gamma decay is for many purposes
prompt, but often the lifetimes of the excited states can be significant and their exponential
decay can be measured. Two-bodies in final state gives a

discrete energy distribution …

2+ state: 1.3325 MeV, 0.71 ps

60Co

100%
β-

5+ 5.27 yr

0+ ground state

4+ state: 2.506 MeV, 1.1ps

E2  ΔE = 1.3325

E2  ΔE = 1.173

60Ni

Gamma rays are emitted by nuclear excited states, their lifetimes are generally too short
to provide useful sources (except for some special cases called “isomeric” states).

There will be an angular correlation
among the beta and two gammas ..

13N

1/2- 9.965m 

13C

1/2-

100%
β+

Annihilation Radiation:

Bremsstrahlung: from
electron beams, continuous energy
spectrum primarily used for
irradiations

e+ + e- → γ + γ


