Melting the Vacuum

Scott Pratt Dept. of Physics & Astronomy Michigan State University

Michigan State University

Is the vacuum empty?

I. "Bare" vacuum (Casimir effect)

II. Higg's condensate

III. Quark-antiquark condensate RHIC program

I. "Bare" Vacuum

- 1. Quantum mechanics: Electrons have levels
- 2. Same is true for EM fields
- 3. Quantum-Field Theory: Vacuum levels have 1/2 "photon"

II. Higg's condensate

- vacuum has non-zero Higg's field
- particles "feel" field & acquire mass
- field melts at T ≈ 10¹⁶ K (10⁻¹¹ seconds into big bang)
- evidence in cosmological background

III. Quark-antiquark condensate

- Vacuum fills with quark pairs
- Condensate couples to protons & neutrons
 & gives mass
- Melts at T $\approx 10^{13}$ K (10⁻⁶ seconds into big bang)
- At same T, protons and neutrons melt into quarks
- Temperatures reached in relativistic heavy ion collisions

Inside a Au+Au collision...

T ≈ 2.7×10¹² K, 150,000 x greater than inside Sun
 ≈ 5000 particles are emitted
 size of hot region ≈ 10⁻¹⁴ m
 explosion lasts ≈ 10⁻²² seconds

But, we only measure outgoing tracks!!!

Michigan State University

Unraveling the data...

Temperature --> spectra, yields Distance and time --> interferometry Explosive flow --> light vs. heavy particle spectra Color composition --> jet suppression Viscosity --> elliptic flow

Elliptic flow

Hydro calculations assume no viscosity!

What we have learned from RHIC (thus far)

- Viscosity is small (perfect fluid)
- Matter behaves like quark liquid
- Matter is opaque about $T_c \approx 170$ MeV
- Pressure is high (not too high)

Needed: Global analysis

- Pure theory
- Thermodynamic Trace -> 10,000 dimensional integral
- Brute force: > 10^{20} floating point calculations

Figure 3

A 12,288-node QCDOC machine under construction at Brookhaven National Laboratory in October 2004.

Lattice results

Melting condensate

Michigan State University

Scott Pratt

- RHIC experiments are reproducing conditions to melt quark-antiquark condensate
 - Vacuum is far from empty