Nuclei are REALLY small **Theoretical / Computational** Atoms are really small **Nuclear Physics** • Typical atomic size: ~10⁻¹⁰ m • Put 10,000,000 atoms in a row: thickness of your fingernail • Best (scanning tunneling) microscopes are just good enough to resolve individual atoms Wolfgang Bauer Department of Physics and Astronomy Nuclei are another factor 100,000 smaller Michigan State University • Typical nuclear size: ~10⁻¹⁵ m Nucleus inside an atom is like a golf ball in a football stadium (but contains almost all of the mass!) July 30, 2007 W. Bauer

Introduction	History	Utilization	Physics	Grid	Mass	Future	
How	do we	learn	about	nucle	ei?		
		nuclei (v gamma					
Nucl	ear pro	ocesses	require	high e	nergy (>	▶ 1 Me\	/)
• Mo	ore than	100,000	times the	e energy	of chem	ical proc	esses
Nucl	ear pro	ocesses	last a v	ery sho	ort time	(<10 ⁻²¹	s)
• A	billionth	of a billio	nth of a i	nilliseco	nd!		
		nuclear re as long b			are detec	ted, the	
	rect obs possible	ervation o	of nuclei	and nuc	lear proc	esses is	
	hood th	eony to	underet	and an	d mode	l tho	

We need theory to understand and model the experimental results and thus learn about nuclei!

W. Bauer

July 30, 2007

Explains basic nuclear masses
Fermi gas model

Grid

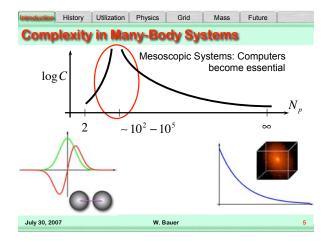
Mass

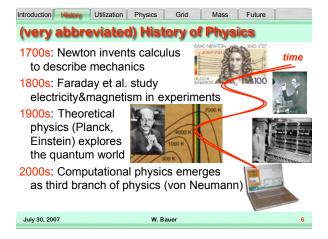
Future

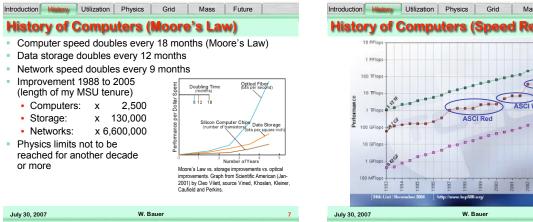
ction History Utilization Physics Grid Mass Future

- Independent particle motion mainly governed by Pauli principle
- Shell model

Nuclear Models
Liquid drop model

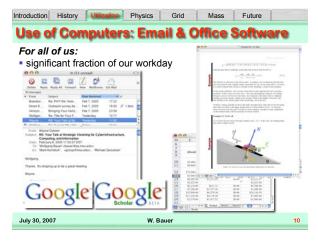

• Similar to atomic shell model

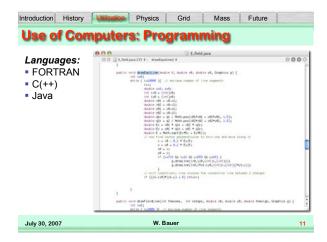

ntroduction History Utilization Physics

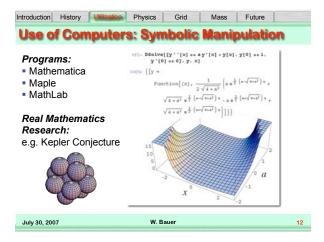

 Nuclear physics requires quantum mechanics, thermodynamics, fluid dynamics, transport theory, theory of phase transitions, complexity and chaos theory, ..., and COMPUTERS

July 30, 2007 W. Bauer 4

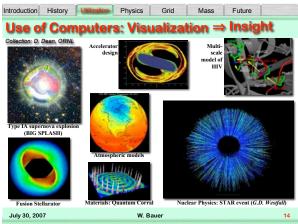
1

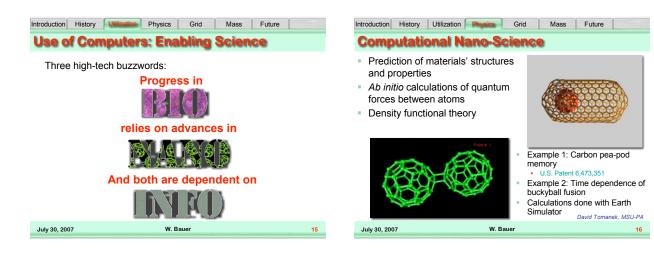


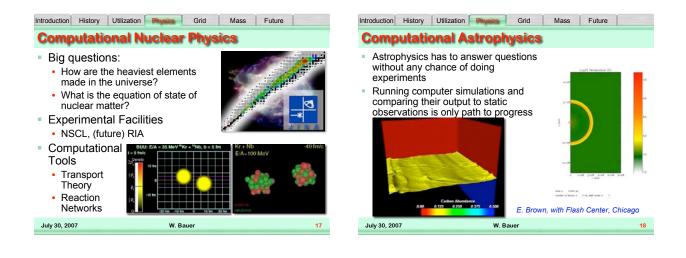


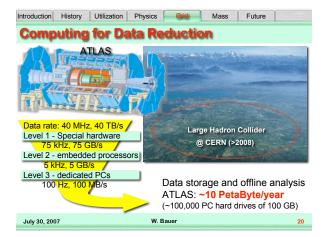


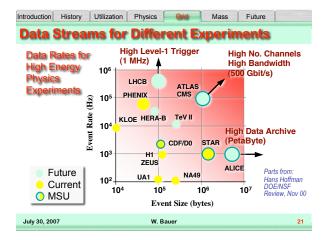
Mass Future History of Computers (Speed Record) • #1 • #500 • Sum 1127.41 1 BlueGene Earth Simu **ASCI** White

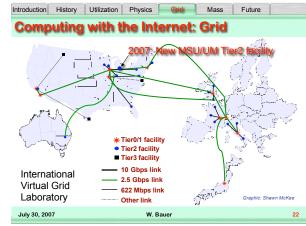


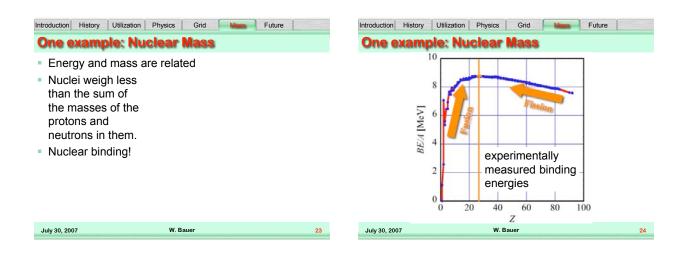




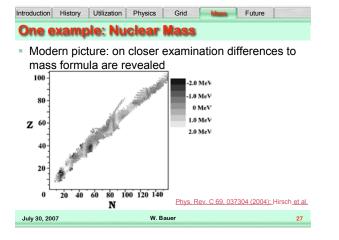


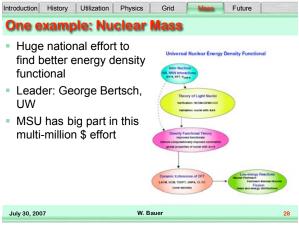






Introduction His	story Utilization	Physics	Grid	Mass	Future	
Comput	ing with t	he Inte	ernet	: SETI		
SE The BR	Tl@home	2 400 T		CPSI Line per	day (years)	
> 100	0 CPU years/da	y !	L/m 7/10		27/2 E/A1 27/03	TANJANA LAN ZAN LAN
	Total	Last 24	Hours			
Users	5343984	1049				
Results received	1758329525	1320508				
Total CPU time	2213000.413 years	963.120 years				
Floating Point Operations	6.441670e+21	5,149981e+18 (59.61 TeraFLOPs/sec)		> ~60 Tera	FLOP/s	
Average CPU tim per work unit	e 11 hr 01 min 30.6 see	e 6 hr 23 min 2	20.9 sec			
July 30, 2007		W. B	auer			19





	Introduction History Utilization Physics Grid Mass Future
One example: Nuclear Mass	One example: Nuclear Mass
Can we understand this? Strong force is short-ranged; nucleons only interact with nearest neighbors No neighbors at the surface Add Coulomb repulsion between protons (+) $B(N,Z) = B_s(N,Z) + B_c(N,Z) + B_a(N,Z) + B_p(N,Z)$ $= a_vA - a_sA^{2/3} - a_c\frac{Z^2}{A^{1/3}} - a_a\frac{(Z - \frac{1}{2}A)^2}{A} - a_p\frac{(-1)^Z + (-1)^N}{\sqrt{A}}$ $B(N,Z) / A = a_v - a_sA^{-1/3} - a_c\frac{Z^2}{A^{4/3}} - a_a\left(\frac{Z}{A} - \frac{1}{2}\right)^2 - a_p\frac{(-1)^Z + (-1)^N}{A^{3/2}}$	 Yep, it works! ¹⁰ ¹⁵⁰ ²⁰⁰ ¹⁰⁰ ¹⁵⁰ ²⁰⁰ ¹⁰⁰ ¹⁵⁰ ¹¹⁰⁰ ¹⁵⁰ ¹⁰⁰ ¹¹⁰⁰ ¹¹⁰⁰
July 30, 2007 W. Bauer 25	July 30, 2007 W. Bauer 26

ntroduction History Utilization Physics Grid Mass	Introduction History Utilization Physics Grid Mass Future				
Predictions	Future of Computing: Quantum Computer				
 Predictions are hard "Prediction is very difficult, especially about the future" (Niels Bohr) But still useful Predictions are like Austrian train schedules. Austrian trains are always late. So why do the Austrians bother to print train schedules? How else would they know by how much their trains are late? (Viktor Weisskopf, paraphrased) 	 Conventional computer: N processors can process N instructions simultaneously Quantum computer: N processors can process 2^N instructions simultaneously 				
 So here we go … Moore's Law will continue for at least another 2 decades Network bandwidth will become infinitesimally cheap and eventually (~2 decades) saturate the human input bandwidth Caution 1: "Software is a gas" (Nathan Myhrvold) Caution 2: Growth in content will only be linear, not exponential 	 Example: N = 16: 2¹⁶ = 65,536 N = 32: 2³² = 4,294,967,296 Future collaboration potential between PA, Math, CSE 				
July 30, 2007 W. Bauer 29	July 30, 2007 W. Bauer 30				

-	History	Utilization	Physics	Grid	Mass	Future
Summ	ary					
inno cont Com scier Nucl com						

July 30, 2007 W. Bauer 31