Lighting the Standard Candle Type Ia Supernovae Edward Brown

Outline

- Why are SNe Ia useful for measuring cosmological distances?
- What are type la supernovae (SNe la)?
 - How are they made?
 - What makes them explode?

20th Century: some novae are "super"

- I920's: some novae—"new stars"—are in other galaxies, and are therefore enormously bright
 - ~10¹¹ brighter than the sun
 - Entire energy output of the sun over ~10⁹ yrs, but emitted in a few weeks
- Zwicky (1938) proposed using supernovae as distance indicators

NASA/Astronomy Picture of the Day—H. Bond (STScI), R. Ciardullo (PSU), WFPC2, HST, NASA

Type la SNe

- Type'd from spectral features (Minkowski 1941)
- Lack of H, He features in spectrum
- At peak, strong spectral features from Si, S, Ca, O
- Expansion velocities ~ 10 000 km/s

Standard Candle

- From the Oxford English Dictionary
 - **Standard** an idea or thing used as a measure, norm, or model in comparative evaluations
 - **Candle** In physics, a unit of luminous intensity
- A useful candle for cosmology is
 - bright
 - not too rare
 - easy to detect and measure
 - ideally well-understood and calibrated
- Observations of distant "candles" probe the geometry of the universe.

Calibration—Broader is brighter

Fig. I from Riess, Press, & Kirshner (1995)

Clues about SNe la

- Time to fade consistent with radioactive decay of ⁵⁶Ni to ⁵⁶Co (half-life 6 d) and ⁵⁶Co to ⁵⁶Fe (half-life 77 d)
- Need about 0.6 M_{sun} of ⁵⁶Ni
- SNe la seen in elliptical galaxies, with no active star formation

Current paradigm: Type Ia supernovae result from the thermonuclear incineration of a carbon-oxygen white dwarf star of mass ≈1.4 M_☉ white dwarf star

Stellar demographics < 0.08 M 0.8< M < 8 4% 19% M > 81% About I star per year is born in the Milky Way 0.08 < M < 0.8 76%

Main-sequence

- Stars spend most of their life on the "mainsequence"
- Balance heat loss, from radiation, with fusion of hydrogen into helium
- The sun is about halfway through its mainsequence lifetime

Fission vs. Fusion

Stellar demographics

Of the stars that live for < 14 billion years, 19/20 will become white dwarfs

White dwarf stars

- One quart weighs as much as Mt.
 Everest!
- Made mostly of carbon and oxygen nuclei in a sea of electrons

Half of all stars are in binaries

Main-sequence secondary

Accretion disk

Mass transferred to white dwarf

White dwarf primary

Mark Garlick, <u>http://www.space-art.co.uk</u>

The Chandrasekhar Limit: M < 1.4 M_{sun}

- Self-gravity: More massive white dwarfs are denser
- Chandrasekhar (1910– 1995) showed that there is a limit to the white dwarf's mass

When central density and temperature are sufficiently high, fusion of ¹²C begins to raise core temperature —"burning ignites"

Parallel Computing

ASCI White is 10,000 processors Current machines are at the 100,000 processor level

Sampler of large-scale flame simulations

Plots courtesy of Reinecke et al. (2002), Gamezo et al. (2004)

Future looks bright

Ongoing and future surveys will find hundreds of these supernovae

Can do "population studies", find rare and potentially interesting events

http://www.lsst.org