How to make gold

by Hendrik Schatz

(stable) Elements in nature

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	Ų	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Creation of new elements is energy source of stars (and the sun)

The sun shines 3.85e33 erg/s = 3.85e26 Watts for at least ~4.5 bio years

The entire sun made of coal would last ~ 4000 years

initially present: mostly hydrogen (~70% - from big bang)

7Mio yrs	Hydrogen (1p,0n)	Helium (2p, 2n)
700,000 yrs	Helium (2p,2n)	Carbon (6p, 6n), Oxygen (8p,8n)
400 yrs	Carbon (6p,6n)	Oxygen (8p,8n)
8 months	Oxygen (8p,8n)	Silicon (14p,14n)
1 day	Silicon (14p,14n)	Iron (26p,30n)
	7Mio yrs 700,000 yrs 400 yrs 8 months 1 day	7Mio yrsHydrogen (1p,0n)700,000 yrsHelium (2p,2n)400 yrsCarbon (6p,6n)8 monthsOxygen (8p,8n)1 daySilicon (14p,14n)

DEMO: Energy generation by nuclear reactions

Precollapse structure of massive star

Iron core collapses and triggers supernova explosion

The Crab Nebula in Taurus (VLT KUEYEN + FORS2)

Is the universe made of iron ?

Nuclei in the Universe:

... not yet

So how is gold made?

Some earlier failed attempts (1590)

Iron from a previous generation of stars is exposed to a flux of neutrons

How does this create heavy elements ?

 \rightarrow Neutron Capture Processes

There are 2:

- s-process (slow neutron capture)

- r-process (rapid neutron capture)

Do neutron capture process exercise

Where does the s-process happen ? there !

in red giants – and it takes several million years ! (or, more correctly, low mass TP-AGB stars)

How can we tell ?

Analyze light from a red giant:

Star contains Technetium (Tc) !!! (heavy element Z=43, T_{1/2} 4 Mio years, Merrill 1952)

What about the r-process (and gold) ???

Question 3 How were the elements from iron to uranium made ?

Neutron star forms (size ~ 10 km radius) Matter evaporated off the hot neutron star r-process site ?

How does the r-process work ? Neutron capture !

NSCL and future facilities reach

