The origin of the proton rare isotopes in nature

Status and Uncertainties of Nuclear-Reaction Rates

Wolfgang Rapp

Out-line

- Overview Nucleosynthesis
- Observed Abundances
- Scenarios for p-Process
- Experimental Status
- Reaction Network
- Influence of Rates on the p-Abundances
- Conclusions

Overview Nucleosynthesis

s-process

Observed Abundances

Isotopic anomalies

Scenarios for p-Process

Conditions

- Very hot environments $T_9 = 2 3$
- Short time scale

Where ?

- Explosive massive stars (SN type II)
- Binary systems (nova, x-ray burster, SN type I)
- Accretion discs on compact objects (black holes)
- Othere scenarios: pre-type II SN production, PCSN, SSAD.

Reaction Energy and Gamov Peak

Rate:
$$\langle \sigma \cdot v \rangle = \left(\frac{8}{\pi \cdot \mu}\right)^{1/2} \cdot \frac{1}{(k \cdot T)^{3/2}} \cdot \int_{0}^{\infty} \sigma(E) \cdot \exp\left(-\frac{E}{k \cdot T}\right) \cdot dE$$

- Penetrability
- Maxwell Boltzmann distribution

Status of (p,γ) -Experiments

Status of (α, γ) -Experiments

- Few experimental data on α -induced reactions.
- Measurements of ${}^{144}Sm(\alpha,\gamma)$ -cross section showed a big difference to theory.
- Exp (n,α) rates for different isotopes shows: ¹⁴³Nd: exp.= NONSMOKER/2.7 ¹⁴⁷Sm: exp.=NONSMOKER/3.3
- α -induced reactions on ⁹⁶Ru result in exp.=theo./2

$^{95}Mo(n,\alpha)$ -Experiment

- Oak Ridge National Laboratory
 150 MeV e⁻-accalerator, 525 Hz, 8 ns, (γ,n)-reactions on Ta
- Energy calibration: time of flight method
- α -particles were detected using a CIC.

The $^{95}Mo(n,\alpha)$ -cross section

NON-SMOKER/Holmes

Activation-Experiments

8 Mo & 7 Sn activations at the PTB (Germany)

- $E_{\alpha} = 8 11 \text{ MeV}$ t_Mo= 25 min 9 h; $\Delta t = 30 \text{ s}$
- $I_{\alpha} = 5 7 \mu A$

- t Sn= 45 min - 4 h; Δt = 30 s

Potential parameters Using SMOKER code and a χ²-test Wood-Saxon potential:

V(r) = -	V_0	$-i$ W_0		
	$1 + \exp\left(\frac{r - r_r A^{1/3}}{1/3}\right)$	$\frac{1}{1+\exp\left(\frac{h}{2}\right)}$	$1 + \exp\left(\frac{r - r_v A^{1/3}}{r_v}\right)$	
	a_r	- · · · · · · · · · · · · · · · · · · ·	a_v	

parameter	V ₀	r _r	a _r	W ₀	r _v	a _v
value	185.0 MeV	1.40 fm	0.52 fm	25,0 Me	V 1.40 fm	0.52 fm
reaction χ^2	⁹⁴ Mo(α,n) 27.0	⁹² Mo(0 104	α,n) ¹¹² S	n(α,γ) 107.5	⁹⁵ Mo(n,α) 146.4	sum 385.0
parameter	V ₀	r _r	a _r	W ₀	r _v	a _v
value	185.0 MeV	1.31 fm	0.52 fm	25,0 Me	V 1.40 fm	0.52 fm
reaction χ^2	⁹⁴ Mo(α,n) 11.4	⁹² Mo(0 4.0	(a,n) ¹¹² S	n(α,γ) 9.1	⁹⁵ Mo(n,α) 4.9	sum 29.4

New Potential Parameters

Independent experiments

ENERGY (MeV)

Network

Extended a MSU network was used for x-ray burst. Simulated explosive O/Ne burning in a SN Type II.

Now: 1814 nuclei
~15000 rates
10 layers

Network $T_{9max}=3.1$

Network $T_{9max}=2.4$

Some Definitions

• Overabundance factor

$$F_i = \frac{X_i}{X_{i_Solar}}$$

Produced mass of isotope i

$$\mathbf{m}_{i}(M) = \sum_{n \ge 1} \frac{1}{2} \times (X_{i,n} + X_{i,(n-1)}) \times (M_{n} - M_{n-1})$$

Averaged overproduction factor for a isotope i.

$$\langle F_i \rangle = m_i(M) / (M_p(M) \times X_{i_Solar})$$

Normalized overproduction factor

 $\frac{\left\langle F_i \right\rangle}{F_0}$

$$F_0 = \sum_i \left< F_i \right> /35$$

Normalized Overabundances

Influence of Rate Types

(i) neutron-rates(ii) proton-rates(iii) α-rates

Conclusions

- More experimental data are needed for α-induced rates (A>147).
- The (γ,p)-rates on p-nuclei (A<96) should be measured.
- The Mo and Ru problem is not a problem of rate uncertainty (n,p,α on A>56)

Convection should be considered in the model.

interesting publications:

- M. Arnould, S. Goriely, Physical Reports 384 (2003) 1-84.
- W. Rapp, P. E. Koehler, F. Käppeler, and S. Raman Physical Review C, Volume 68, (2003) 015802.