Sep
21
2021

16th International Symposium on Nuclei in the Cosmos (Opens in a new window)

Chengdu, China

School
Workshops & Conferences

Nuclei in the Cosmos is the most important international meeting in the field of nuclear astrophysics. It brings together nuclear experimentalists, nuclear theorists, astronomers, theoretical astrophysicists, cosmo-chemists, and others interested in the scientific questions at the interface of nuclear physics and astrophysics. These questions concern, for example, the origin of the elements in the cosmos and the nuclear reactions that occur in the big bang, in stars, and in stellar explosions.

Sep
13
2021

16th Nuclei in the Cosmos (NIC) School (Opens in a new window)

Hybrid Meeting

School

NIC school is a traditional satellite meeting intended to educate young students and postdocs, motivating them with the most recent progress as well as unresolved quests in nuclear astrophysics. Topics include Astrophysics, Observation, and Nuclear Physics.

Lecturers include:

M. Aliotta(Edinburgh), R. Diehl(MPIE), A. Heger(Monash), A. Karakas(Monash), T. Kajino(BUAA), N. Liu(WUSTL), A. Spyrou(MSU), and N. Vassh(ND)

Jul
14
2021

Virtual workshop on (a,n) reactions for astrophysics (Opens in a new window)

Virtual workshop

Workshops & Conferences

(α,n) reactions play a pivotal role in a variety of astrophysical sites and mass regions, and they can help us understand the origin of the elements. Their astrophysical rates are the main nuclear physics uncertainty in the weak r-process (also known as the α-process), which occurs in the neutrino driven ejecta of core-collapse supernovae and can explain the production of the lighter heavy elements, that are observed in metal poor stars. The 22Ne(α,n)25Mg and 13C(α,n)16O reactions are the main neutron sources for the s- and the i-processes.

Jun
28
2021

North American Storage Rings and Neutron Captures Workshop (Opens in a new window)

Online Via Zoom and Gather

Workshops & Conferences

 

Embracing the virtual nature of the workshop, the meeting will be broken into three half-day sessions. No parallel sessions are planned. Zoom will be used for the primary presentation of technical content, while substantial breaks are planned where critical informal discussion can take place in Gather.Town. Gather.Town allows us to invite you for a virtual coffee and exciting discussions.

Planned topics of discussion include:

Jun
21
2021

2021 R-matrix Workshop (Opens in a new window)

Virtual Workshop

Workshops & Conferences

We would like to invite you to participate in an online IReNA sponsored workshop on all things R-matrix that will be held from June 21 - 24, 2021. This meeting will have an abbreviated format and will focus on presentations by young and early career researchers.

The aim of this meeting is to bring together a diverse group of researchers with representatives from experiment and theory who utilize the R-matrix formalism for a variety of purposes.

Talks will span a wide range of topics covering experimental, theoretical, evaluation developments using R-matrix.

Apr
08
2021

Three-dimensional hydrodynamical simulations unravel the evolution of SN 1987A from the explosion to the supernova remnant (Opens in a new window)

IReNA Online Seminar

Seminars

Dr. Masaomi Ono

RIKEN

Abstract: Supernova 1987A (SN 1987A) provides a unique opportunity to unravel the  evolution of core-collapse supernovae (CCSNe) from the explosions to  their supernova remnants (SNRs) thanks to its proximity and youth. Early  observation of iron lines has indicated matter mixing during the  explosion to convey innermost 56Ni to outer layers. Since the density  structure of the progenitor star affects the matter mixing, it provides  a hint on the properties of the progenitor star.

Mar
26
2021

Constraining Tidal deformability from finite nuclei data, Bijay Agrawal (Saha Institute of Nuclear Physics) (Opens in a new window)

IReNA Online Seminar

Seminars
*Please note that this seminar will take place at 11:00am ET

Bijay Agrawal

Saha Institute of Nuclear Physics

The tidal deformability inferred from the Gravitational Waves, which are emitted by merging neutron stars, are instrumental in determining the equation of state (EoS) of dense matter. The importance of the observed finite nuclei properties in unveiling the correlations of the tidal deformability with the key EoS parameters will be discussed.

Mar
13
2021

PAN-CAKE masterclass for educators (Opens in a new window)

Outreach

PAN-CAKE is a free online masterclass for teachers scheduled on March 13 & 14, 12:30-4:00pm ET. Science teachers (from pre-service to veterans) in the US and Canada will learn about world-class scientific research in nuclear astrophysics at MSU’s Facility for Rare Isotope Beams. This is an opportunity to meet scientists and other educators, take a “virtual tour” of a leading rare isotope laboratory, collect tools and demos for your curriculum, and discover the future of research.

Mar
12
2021

The Unexamined Life: Implications for Mental Well-Being (Opens in a new window)

IReNA Online Seminar

Seminars

Marsha Carolan

Michigan State University

Abstract:

Are you connected with your “self”? with others? With your past and present?

In this presentation specially dedicated to graduate students and postdocs, we will explore linkages with mental well-being. There will be opportunities for discussion and questions.

Jan
29
2021

r-process nucleosynthesis and the production of heavy elements: A nuclear physics perspective (Opens in a new window)

IReNA Online Seminar

Seminars

Samuel Giuliani

(ECT*), Trento, Italy 

About half of the chemical elements heavier than iron that found in nature are produced during the rapid neutron-capture process (r process). In August 2017, the observation of the kilonova light curve, an electromagnetic transient produced by the radioactive decay of r-process nuclei synthesized during the merger of two neutron stars, marked the beginning of a new era for r-process studies where nucleosynthesis predictions can be directly confronted with astronomical observations.

Dec
11
2020

Nuclear-physics and multi-messenger constraints on the neutron-star equation of state (Opens in a new window)

IReNA Online Seminar

Seminars

Ingo Tews

Los Alamos National Laboratory

Neutron stars contain the largest reservoirs of degenerate fermions, reaching the highest densities we can observe in the cosmos, and probe matter under conditions that cannot be recreated in terrestrial experiments. Throughout the Universe, a large number of high-energy, cataclysmic astrophysical collisions of neutron stars are continuously occurring.

Nov
30
2020

JINA Horizons (Opens in a new window)

Online via Zoom

Workshops & Conferences

JINA-CEE and IReNA will organize “JINA Horizons” on November 30 - December 4, 2020 - a virtual meeting that brings together the international nuclear astrophysics community to discuss open questions and future directions.

Nov
13
2020

The past, present, and future of r-process enhanced stars. (Opens in a new window)

IReNA Online Seminar

Seminars

Terese Hansen

Texas A&M University

A small fraction of old, metal-poor stars exhibits large enhancements in elements produced in the rapid neutron capture (r-)process. Their chemical composition, mapped through detailed abundance analysis, is a direct fingerprint of the elements produced in the stellar generation before them. This makes them excellent laboratories for studying the r-process. The first r-process enhanced star was discovered over 30 years ago. Since then, about 30 highly r-process enhances stars have been found in the Milky Way halo.

Oct
16
2020

Nucleosynthesis and observational evidences of magneto rotational driven supernovae (Opens in a new window)

IReNA Online Seminar

Seminars

Mortiz Reichert

TU Darmstadt

Abstract: About half of the heavy elements in our Universe are synthesized by one process, the rapid neutron capture process (r-process). This process requires extreme and violent environments that achieve the necessary neutron-rich conditions. Neutron star mergers and magneto rotational driven supernovae are promising candidates to host the r-process. We investigate the r-process from an observational as well as a nucleosynthesis point of view.